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Abstract

 

Humans are, and for the foreseeable future remain our best
and only example of true intelligence. In comparison, even ad-
vanced robots are still embarrassingly stupid. Consequently, one
popular approach for imparting intelligent behaviors to robots
and other machines abstracts models of human control strategy
(HCS), learned directly from human control data. This type of ap-
proach can be broadly classified as “learning through observa-
tion.” A competing approach, which builds up complex behaviors
through exploration and optimization over time, is reinforcement
learning. We seek to unite these two approaches and show that
each approach, in fact, complements the other. Specifically, we
propose a new algorithm, rooted in reinforcement learning, for
stabilizing learned models of human control strategy. In this pa-
per, we first describe the real-time driving simulator which we
have developed for investigating human control strategies. Next,
we motivate and describe our framework for modeling human
control strategies. We then illustrate how the resulting HCS mod-
els can be stabilized through reinforcement learning and finally
report some positive experimental results.

 

1. Introduction

 

Models of human skill, which accurately emulate dynamic hu-
man behavior, have far reaching potential in areas ranging from
robotics to virtual reality to the intelligent vehicle highway sys-
tem. Thus, a number of different researchers have endeavored in
recent years to abstract models of human skill directly from ob-
served human input-output data (see [1] for an overview of the lit-
erature). Unfortunately, capturing intelligent behaviors through
human modeling suffers from some potential weaknesses. Be-
cause human control strategies are dynamic, nonlinear, stochastic
processes, 

 

analytic

 

 models of human actions tends to be quite dif-
ficult, if not impossible, to abstract. Therefore, HCS models are
usually derived 

 

empirically

 

, rather than analytically from real-
time human input-output data. As such, traditional performance
or stability guarantees, like those in linear control for example, are
typically not available. 

In previous work, we have sought to address this issue through
task-specific performance measures and post-training perfor-
mance optimization [2]. Here, however, we propose a new algo-
rithm for improving the performance of learned HCS models
through 

 

reinforcement learning

 

. Reinforcement learning denotes
a class of adaptive techniques that seek to learn to predict and con-
trol the behavior of an autonomous agent through that agent’s in-
teraction with his/her environment. Modern reinforcement
learning borrows heavily from the fields of operations research
and optimal control; in particular, the agent’s environment is ap-

proximated as a Markov Decision Process (MDP) [3], so that the
agent is asked to maximize rewards emitted by the MDP. 

Reinforcement learning too, however, suffers from some sig-
nificant weaknesses. First, reinforcement learning techniques of-
ten do not scale well to problems with high-dimensional input
spaces. Furthermore, much of the literature in reinforcement
learning deals only with problems where the agent has perfect
knowledge about the state of his/her environment. This condition
is rarely met in real life (e.g. noisy sensors, finite precision, etc.)
and techniques tailored for a perfect-knowledge environment can
degenerate to give arbitrarily poor results when uncertainty about
the agent’s state exists [4].

In this paper, we propose to combine reinforcement learning
with the modeling of human control strategies in order to address
the weaknesses inherent in each approach by itself. The HCS
model aids reinforcement learning by intelligently partitioning a
high-dimensional input space into regions that are meaningfully
different to the reinforcement learner. Even more significantly,
the HCS model can serve to “jump-start” the policy of the rein-
forcement learner. At the same time, reinforcement learning can
take an initially imperfect HCS model and — as we will show —
improve its performance substantially.

 

2. Real-time driving simulator

 

Driving is a prototypical example of human control strategy
that offers a rich environment for studying HCS modeling. The
task is inherently multi-input, multi-output (MIMO), and includes
control outputs which vary both continuously and discontinuous-
ly with sensor inputs. Below we describe a driving simulator that
we have developed for investigating human control strategies. We
choose virtual driving over real driving for a number of reasons:
(1) it is safer for the human operator, (2) it allows us better control
of our experimental environment, and (3) it allows us to vary the
control difficulty of the task without fear of accident or injury. 

Figure 1 shows the real-time graphic driving simulator which
we have developed as an experimental platform. In the simulator,
the human operator has independent control over the steering of
the car, the brake and the accelerator, although the simulator does
not allow both the gas and brake pedals to be pushed at the same
time. The state of the car is described by  [1], where

 is the lateral velocity of the car,  is the longitudinal velocity
of the car and  is the angular velocity of the car; the controls are
given by , where  is the user-applied longitudinal force
on the front tires and  is the user-applied steering angle. 

Because of input device constraints, the force (or acceleration)
control  is limited during each 1/50 second time step, based on
its present value. If the gas pedal is currently being applied
( ), then the operator can either increase or decrease the
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amount of applied force by a constant  or switch to braking.
Similarly, if the brake pedal is currently being applied ( ) the
operator can either increase or decrease the applied force by a sec-
ond constant  or switch to applying positive force. Thus, the

 and  constants define the responsiveness of each pedal. 
For the experiments in this paper, we collect human driving

data across randomly generated roads like the 20km one shown in
the map of Figure 1. The roads are described by a sequence of (1)
straight-line segments and (2) circular arcs. The length of each
straight-line segment, as well as the radius of curvature of each
arc, lies between 100 and 200 meters. Finally, the visible horizon
is set at 100m.

 

3. Human control strategy modeling

 

In modeling human control strategies, we want to map sensory
inputs to control action outputs. For our case, the sensory inputs
to the model are a vector  of (1) current and time-delayed states

, (2) previous control outputs , and (3) a de-
scription of the road visible from the current car position. The
control action outputs of the model are the steering and accelera-
tion commands at the next time step (see [1,5] for details). Viewed
as a mapping from inputs to outputs, note that the two controls —
steering and acceleration — are fundamentally quite different.
For given human driving data, steering will tend to vary 

 

continu-
ously

 

 with sensory inputs, while acceleration will tend to vary 

 

dis-
continuously

 

 with sensory inputs. This is 

 

not

 

 merely an artifact of
the input device constraints, but is caused primarily by the neces-
sary switching between the brake and gas pedals, as is also the
case for real driving.

As was demonstrated in [5], continuous learning architectures
— whether they be fuzzy logic-based, neural network-based, or
memory-based — cannot faithfully reproduce control strategies
where discrete events or decisions introduce discontinuities in the
input-output mapping. Therefore, we have developed a hybrid
continuous/discontinuous modeling framework for handling the
two different control types [1,5]. The resulting architecture is il-

lustrated in Figure 2. Note that the continuous steering control is
modeled by a 

 

cascade neural network

 

, a powerful continuous
nonlinear function approximator, which makes few 

 

a priori

 

 as-
sumptions about the underlying structure of the human controller
[1, 6]. The discontinuous part of the overall model, which is the
primary focus of this paper, is described in somewhat greater de-
tail below.

 

3.1 Discontinuous control

 

We view the discontinuous acceleration control not as a deter-
ministic functional mapping (as we did the continuous steering
control), but rather as a probabilistic relationship between sensory
inputs and discontinuous outputs. For each possible control action

, we train a corresponding statistical model  to maximize,
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Fig. 1: The experimental driving simulator.
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Fig. 2: Overall control structure. Steering is controlled by a cascade neural network, while the discontinuous acceleration 
command is controlled by the HMM-based controller (shaded box).
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, . (1)

where  denotes the set of sensory input vectors in the human
control data that led the human to execute action , and

 denotes the likelihood of  given the model .
After training, given an unknown input vector , we now

choose action  stochastically so that, 

 with probability , (2)

where,

 (Bayes Rule), (3)

,  is a normalization factor, and
 represents the 

 

prior

 

 probability of selecting action .
As with the continuous steering control, the statistical models
 should not be needlessly complicated and should make as few

 

a priori

 

 assumptions about the underlying distribution of the hu-
man control data as possible. Moreover, computing the maxi-
mum-likelihood estimate of the parameters in each model (i.e.
maximizing (1) above) should be relatively easy. Hidden Markov
Models (HMMs) [7], which are powerful, trainable statistical
models that have previously been applied in a number of stochas-
tic signal processing applications, appear to meet the above crite-
ria, since well-known algorithms exist for training them on

 

arbitrary

 

 statistical distributions.
The simplest type of HMM consists of a single state, with a

discrete-output probability distribution. In order to train these
HMMs for our problem, we must first convert the input vectors 
to discrete symbols . To minimize the resulting distortion and
loss of information, we choose the well-known LBG vector-quan-
tization algorithm [8], which iteratively generates vector code-
books of size , , and can be stopped at an
appropriate level of discretization, as determined by the amount
of available human control data.

Each statistical model  therefore reduces to a probability
vector , whose th element  is equivalent to the relative
frequency of input symbol  leading to control action . Conse-
quently,

(4)

so that equation (2) reduces to a learned stochastic policy,

, , (5)

for each possible input observable  and action .
It should be noted that the discretized input observables im-

plicitly encode time-dependent information since the input vec-
tors , corresponding to the discrete observables, contain
histories of both the state and previous outputs. A more detailed
discussion of the trade-offs in modeling complexity and accuracy
between single-state and multi-state HMMs, omitted here for
space reasons, can be found in [1]. 

Finally, to make the definition of  complete, we note
that the priors  are easily estimated as the relative frequen-
cy of occurrence of each action in the human control data. In our
driving example, there are a total of eight possible actions, as out-
lined in Section 2.

 

3.2 Experiment

 

We ask Larry to drive over two different randomly generated
20km roads  and , where each run lasts approximately 10
minutes. A part of Larry’s second run, for example, is shown in
Figure 3(a) below. Larry’s driving behavior is representative of
typical human driving in the simulator, in that (1) the steering
control is reasonably continuous; (2) the acceleration control has
significant discontinuities due to rapid switching between the
brake and gas pedals; and (3) Larry manages to stay on the road
(  deviation from the road median) for most of the run, with
only a few brief off-road episodes in especially tight turns.

Now, we use Larry’s first run ( ) to train a hybrid continu-
ous/discontinuous HCS model (Figure 2), and reserve the run on
road  for testing the learned model. We include six time-de-
layed values of the state and previous control outputs in the input-
space representation and quantize the resulting input vectors 
to  observables. Figure 3(b) plots a typical control tra-
jectory over road  for the resulting HCS model. In order to
benchmark the performance of the hybrid discontinuous/continu-
ous HCS model, we also train a second HCS model which maps
both the steering  

 

and

 

 the acceleration  with continuous cas-
cade neural networks, using the same input representation. Figure
3(c) plots part of the control trajectory over road  for this strict-
ly continuous HCS model. Table 1 compares some aggregate sta-
tistics for Larry’s original data and the two different HCS models.

From Figure 3 and Table 1 we make several observations.
First, we note that the continuous HCS model [Figure 3(c)], de-
spite the discontinuous acceleration command, is able to learn

 

something

 

; that is, the model keeps the vehicle on the road (except
for one high-curvature turn that Larry himself was not able to han-
dle properly). Not only that, but it does so at approximately the
same average speed and lateral distance from the road median us-
ing a similar steering control strategy as Larry. In some respects,
the model’s control can even be considered to be superior to Lar-
ry’s control. The model only rarely engages the brake, and main-
tains tighter lateral road position.

If we judge the continuous model on how faithfully it repro-
duces Larry’s acceleration control strategy, however, it rates sig-
nificantly worse; that is, the model’s acceleration control looks
nothing like Larry’s. It was shown in [5] that Larry’s acceleration
control is not easily expressed in a continuous functional form,
such as a neural network, since the switching discontinuities in
the acceleration control essentially require very similar input vec-
tors to be mapped to radically different output vectors.
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Table 1: Statistical comparison

 

Road Larry hybrid model
continuous 

model

 

 (mph)

 (m)

 (rad)

 (N)

 

ρ
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v

 

71.9 9.0

 

±

 

70.7 8.1
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73.6 2.5

 

±

 

d

 

0.72– 1.46

 

±

 

1.38– 1.70

 

±

 

1.00– 0.60

 

±

 

δ

 

0.094

 

±

 

0.081

 

±

 

0.068

 

±

 

α

 

2240 2620

 

±

 

1970 2340

 

±

 

1780 760

 

±



 

The hybrid continuous/discontinuous controller [Figure 3(b)]
appears to do a much better job in modeling Larry’s driving con-
trol strategy. In fact, we can quantify the degree of similarity be-
tween Larry’s control strategy and each of the two models, by
computing a stochastic similarity measure  which we have de-
veloped previously [9] for comparing human control strategies.
The similarity measure is capable of comparing stochastic, multi-
dimensional trajectories and yields a value between 0 and 1, with
larger values indicating greater similarity. For the similarity com-
parison here, we include all relevant state and control variables

, and arrive at the following similarity values:

(6)

(7)

Hence, the hybrid controller is significantly more faithful to Lar-
ry’s control strategy than the strictly continuous controller. 

Unfortunately though, the hybrid controller also tends to be
significantly less stable than its continuous counterpart. Note, for
example, from Figure 3(c) that the hybrid controller veers off the
road at sec. To understand why this may be happening,
consider, for example, Figure 4, where we plot a small part of Lar-
ry’s first run. We observe that Larry’s trajectory takes him close
to the edge of the road; what keeps him from driving off the road
is the switch from the gas to the brake at time . Now, because
the action selection criterion in equation (2) is stochastic, it is pos-
sible that the stochastic controller will only brake at time ,
even if the time  is modeled as the most likely time for a control

switch. Braking at time , however, may be too late for the
car to stay in contact with the road.

 

4. Reinforcement learning stabilization

 

In previous work [1], we attempted to address the stability
problem of the hybrid HCS models by increasing the prior proba-
bility of switching from accelerating to braking by some small .
The problem with this 

 

ad hoc

 

 modification is two-fold. First, spe-
cific values of  need to be experimentally determined for every
new HCS model, and second, we cannot be sure that this adjust-
ment addresses all sources of instability. Therefore, we look to-
wards reinforcement learning for a more principled and less 

 

ad
hoc

 

 approach to improving model stability.

 

4.1 Introduction

 

Our overall approach for stability improvement proposed be-
low seeks to modify the initial hybrid HCS model through rein-
forcement learning. We look towards the theory of Partially
Observable Markov Decision Processes (POMDP) (see [10] for
an excellent discussion) as an appropriate modeling framework
for our driving domain. In other words, we propose that in the
driving domain there exist meaningful underlying states that are
sufficient statistics to determine the next state of the driving
agent, and therefore to make optimal decisions, but that the agent
is limited to observing a small number of messages from the en-
vironment that encode and compress this information. 

In order to apply the theory of POMDPs to our problem, we
choose the following simple assignment of rewards . All states
that are off the road are assigned a reward of , a form of pun-
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Fig. 3: (a) Part of Larry’s steering, acceleration and lateral offset trajectories over time; (b) part of the hybrid continuous/
discontinuous HCS model’s steering, acceleration and lateral offset trajectories; and (c) part of the purely continuous HCS 
model’s steering, acceleration and lateral offset trajectories.
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ishment. Further, if the driving agent loses sight of the road
(deemed a “catastrophic failure”), we reset the agent to its starting
position after applying the  penalty for the previous 50 steps.
This extended penalty prevents the agent from learning that if it
veers off the road, it should aim to reach a catastrophic state so as
to quickly return to the good initial position.

 

4.2 RL algorithm for stabilization

 

Well-studied algorithms in reinforcement learning (RL), like

 

Q

 

-learning [3], suffer from significant weaknesses in our current
setting. First, little work has been done with stochastic policies in
reinforcement learning. Second, traditional RL techniques are not
capable of maintaining fidelity to prior human control data, since
they typically modify a policy at every step of policy evaluation.
Third, many of the current techniques in reinforcement learning
have problems dealing with partial observability. Defining an op-
timal policy can be difficult, as an agent cannot, in general, max-
imize the value of all observations simultaneously. Moreover, the
one-state updates that most algorithms employ do not accurately
estimate the value of each observation [4]. Finally, in this domain,
there are often many steps between punishments.

To deal with these difficulties, we propose an algorithm very
similar to the one described in [11]. Let  denote an obser-
vation/action pair; let  denote the current stochastic pol-
icy for all ; let  denote the current relative value for
all ; let  denote the current eligibility for all ;
and let  denote the current number of times that the pair

 has been visited. Also, let  denote the temporal-
difference learning discount factor; let  denote the total num-
ber of actions performed; and let  denote the current average re-
ward. Then the algorithm proceeds as follows:

1.

 

Initialization

 

:
At the start of the algorithm, we initialize the following values:

, , , (8)

, (9)

 = learned HCS model [equation (5)] (10)

 = initial observation (11)

2.

 

Policy evaluation

 

:
In evaluating the current policy, we iterate the steps below for

 steps. First, we choose an action  stochastically
according to the current policy  and the current obser-

vation , and then execute . Consequently  and 
are incremented,

, (12)

(13)

Defining,

 = reward after execution of , (14)

 (previous observation), and (15)

 = current observation after execution of , (16)

we compute the differential reward  for action  versus the
reward we would otherwise have predicted,

, (17)

where  is the value of the observation (state)  defined
as,

(18)

We then update the value function ,

, (19)

,

, (20)

and the eligibility function ,

, (21)

, . (22)

Finally, we update the average reward ,

(23)

3.

 

Policy improvement

 

:
We are now interested in updating the policy  for those
observations (states)  with low values  (i.e. poor sta-
bility). Hence, if,

, (24)

and,

, (25)

then we modify our current policy by,

(26)

for some constant  and,

(27)

In other words, the policy for states with poor stability is mod-
ified if the value of the best action for those states is signifi-
cantly larger than the value of those states themselves
[equation (25)].

Our algorithm applies the Policy Improvement Theorem in
[11], which states that perturbing our policy toward actions that
maximize  will improve the average reward as long as the
perturbations  are small. Thus, we carefully choose to perturb
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Fig. 4: Instability can result if the hybrid controller switches 
to braking too late.
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the policy only for those observations  that stand to have a sig-
nificant improvement, as indicated by equation (25). 

 

4.3 Experiment

 

We now apply our algorithm to the hybrid HCS model learned
from Larry’s control data. The stabilization algorithm is executed
on roads that are statistically similar to road  with,

, , , (28)

The resulting modified model exhibits a dramatic improvement in
stability. Where before Larry’s model rarely could travel for more
than 5km without a catastrophic failure, the modified HCS model
completes100km courses without any catastrophic failures. Fur-
thermore, it does so with little drop in average speed and fidelity,
as illustrated in Table 2 below.

 

4.4 Discussion

 

Table 2 clearly demonstrates that the RL optimization of the
initial HCS model improves the model’s stability. It was not pos-
sible to achieve similar such improvements using 

 

ad hoc

 

 stabili-
zation procedures. Let us illustrate schematically why this might
be the case. In Figure 5, the policy  is drawn as a grid,
where each box in the grid represents one observation/action pair.
(For readability, we drew a grid with only 20 possible observa-
tions .) Boxes in the grid that are shaded are modified after
training the HCS model, while boxes that are white represent un-
modified states. As part (a) of Figure 5 indicates, an 

 

ad hoc

 

 stabi-
lization procedure modifies a set number of  pairs by a
fixed amount. In the RL stabilization procedure [Figure 5(b)],
however, any  pair with initial probability greater than zero
can potentially be modified by some not predetermined amount.
It therefore has significantly greater flexibility in stabilizing the
initial HCS model, while still retaining its fidelity to the human
control data. Moreover, the RL stabilization is based on active ex-
ploration and consequent optimization of the actual system.

 

5. Conclusion

 

We believe that this work opens up a promising direction for
future research by combining learning through observation (from
humans) with subsequent reinforcement-learning-based optimi-
zation. Little work has been done previously to incorporate prior
knowledge into reinforcement learning, and this paper offers one
potentially successful approach for tackling this problem. Cur-
rently, we are exploring the modeling framework of this paper
with more varied data (from different humans), varied learning
parameters, algorithmic variations and applications in other learn-
ing domains.
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