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Abstract

In the last few years, modeling dynamic human control strate-
gy (HCS) is becoming an increasingly popular paradigm in a
number of different research areas, such as the intelligent vehicle
highway system, virtual reality and robotics. Usually, these mod-
els are derived empirically, rather than analytically, from real
human input-output control data. As such, there is a great need to
develop adequate performance criteria for these models, as few
guarantees exist about their theoretical performance. It is our
goal in this paper to develop several such criteria. In this paper,
we first collect driving data from different individuals through a
real-time graphic driving simulator. We then model each individ-
ual’s control strategy through the flexible cascade neural network
learning architecture. Next, we develop two performance mea-
sures for evaluating the resulting HCS models, one dealing with
obstacle avoidance, the other with tight-turning behavior. Final-
ly, we evaluate the relative skill of different HCS models through
the proposed performance criteria.

1. Introduction

HCS models, which accurately emulate dynamic human be-
havior, find application in a number of research areas ranging
from robotics to the intelligent vehicle highway system. Because
human control strategy (HCS) is a dynamic, nonlinear stochastic
process, developing good analytic models of human control strat-
egies, tends to be difficult. Therefore, recent work in modeling
HCS has focussed on learning empirical models, through, for ex-
ample, fuzzy logic [1,2], and neural network techniques [3]. Since
these HCS models are empirical, few if any guarantees exist about
their theoretical performance. Thus, performance evaluation is an
integral aspect of HCS modeling research, without which it is im-
possible to rank or prefer one HCS controller over another.

Skill or performance can be defined through a number of task-
dependent as well as task-independent criteria. Some of these cri-
teria may conflict with one another, and which is most appropriate
for a given task depends in part on the specific goals of the overall
task. Therefore, rather than examine performance evaluation in
the abstract, we focus on one specific HCS namely, the task of hu-
man driving.

In this paper, we first record driving data from different indi-
viduals through a dynamic driving simulator. For each driver, we
then train a HCS model using the flexible cascade neural network
learning architecture. Because each of the different drivers exhib-
its a different style or control strategy, their respective models
will likewise differ. It is the goal of this work to define perfor-
mance criteria by which the driving models’ performance can be
evaluated and ranked.

In previous work, a stochastic similarity measure, which com-
pares model-generated control trajectories to the original human
training data, has been proposed for validating HCS models [4].
While this similarity measure can ensure that the neural network
model adequately captures the driving characteristics of the hu-
man operator, it does not measure a particular model’s skill or
performance. In other words, it does not (nor can it) tell us which
model is better or worse. In this paper, therefore, we propose two
measures for evaluating the performance of HCS models.

For the task of driving, many candidate performance criteria,
such as average speed, driving stability, driving safety and fuel ef-
ficiency, exist. Rather than select such specific criteria, however,
we prefer to decompose the driving task into subtasks, and then
define criteria that measure performance for the most meaningful
subtasks. For example, we can view the driving task as a combi-
nation of the following subtasks: (1) driving along a straight road,
(2) turning through a curve in the road and (3) avoiding obstacles.
Of these subtasks, avoiding obstacles is perhaps the most useful
one, as it can measure important characteristics of the HCS mod-
el, including its ability to change speeds quickly while maintain-
ing vehicle safety and stability. Thus, the first performance
criterion we develop is based on avoiding obstacles. Our second
performance criterion investigates the HCS models’ behavior in
executing tight turns. Both of these test the behavior of the models
outside the range of training data from which the models are
learned.

In this paper, we first introduce the dynamic graphic driving
simulator that we use to collect human data and from which the
HCS models are trained. We then show how we model each indi-
vidual’s human control strategy using the cascade neural network
learning architecture. Finally, we develop the obstacle avoidance
and tight turning performance criteria. For each of the proposed
criteria, we demonstrate their use on HCS models trained from
different individuals’ data.

2. Experimental setup

For this work, we collect human driving data from a real-time
graphic simulator, whose interface is shown in Figure 1 below. In
the simulator, the human operator has independent control of the
vehicle’s steering as well as the brake and gas pedals. The simu-
lated vehicle’s dynamics are given by the following second-order
nonlinear model:
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and the controls are given by,
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where  is the longitudinal force on the front tires, and  is the
steering angle.

Note that the separate brake and gas commands for the human
are in fact the single  variable, where the sign indicates wheth-
er the brake or the gas is currently active. Each individual is asked
to navigate across several randomly generated roads, which con-
sist of a sequence of (1) straight-line segments, (2) left turns, and
(3) right turns. The map in Figure 1, for example, illustrates one
randomly generated 20km road for which human driving data was
recorded. Each straight-line segment as well as the radius of cur-
vature for each turn range in length between 100m and 200m.
Nominally, the road is divided into two lanes, each of which has
width . The human operator’s view of the road ahead
is limited to 100m. Finally, the entire simulator is run at 50Hz.

3. HCS modeling

In this paper, we choose the flexible cascade neural network
architecture with node-decoupled extended Kalman filtering
(NDEKF) [5, 6] for modeling the human driving data. We prefer
this learning architecture over others for a number of reasons.
First, noa priori model structure is assumed; the neural network
automatically adds hidden units to an initially minimal network as
the training requires. Second, hidden unit activation functions are
not constrained to be a particular type. Rather, for each new hid-
den unit, the incremental learning algorithm can select that func-
tional form which maximally reduces the residual error over the
training data. Typical alternatives to the standard sigmoidal func-
tion are sine, cosine, and the Gaussian function. Finally, it has
been shown that node-decoupled extended Kalman filtering, a
quadratically convergent alternative to slower gradient descent
training algorithms (such as backpropagation or quickprop) fits
well within the cascade learning framework and converges to
good local minima with less computation [5].

The flexible functional form which cascade learning allows is
ideal for abstracting human control strategies, since we know very
little about the underlying structure of each individual’s internal
controller. By making as fewa priori assumptions as possible in
modeling the human driving data, we improve the likelihood that
the learning algorithm will converge to a good model of the hu-
man control data.

In order for the learning algorithm to properly model each in-
dividual’s human control strategy, the model must be presented
with those state and environmental variables upon which the hu-
man operator relies. Thus, the inputs to the cascade neural net-
work should include, (1) current and previous state information

, (2) previous output (command) information
, and (3) a description of the road visible from the current

car position. More precisely, the network inputs are,

, (20)Fig. 1: The driving simulator gives the user a perspective
preview of the road ahead. The user has independent controls
of the steering, brake, and accelerator (gas).
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where  is the length of the state histories and  is the length
of the previous command histories presented to the network as in-
put. For the road description, we partition the visible view of the
road ahead into  equivalently spaced, body-relative  co-
ordinates of the road median, and provide that sequence of coor-
dinates as input to the network. Thus, the total number of inputs
to the network  are,

(23)

The two outputs of the cascade network are
. For the system as a whole, the cascade

neural network can be viewed as a feedback controller, whose two
outputs control the driving of the vehicle. Figure 2 illustrates the
overall structure of the model-vehicle system.

4. Obstacle avoidance performance criterion

In real driving, obstacles such as rocks and debris can unex-
pectedly obstruct a vehicle’s path and force a driver to react rap-
idly. Thus, obstacle avoidance is one important performance
criterion by which we can gauge a model’s performance. In this
section we develop and evaluate such criteria for different HCS
models.

4.1 Virtual path equivalence

Since our HCS models receive only a description of the road
ahead as input from the environment, we reformulate the task of
obstacle avoidance asvirtual path following. Assume that an ob-
stacle appears  meters ahead of the driver’s current position.
Furthermore, assume that this obstacle completely obstructs the
entire width of the road ( ) and extends for  meters along the
road. Then, rather than follow the path of the actual road, we wish
the HCS model to follow a virtual path as illustrated in Figure 3.
This virtual path consists of (1) two arcs with radius of curvature

, which offset the road median laterally by , followed by (2)

a straight-line segment of length , and (3) another two arcs with
radius of curvature  which return the road median to the original
path. By analyzing the geometry of the virtual path, we can calcu-
late the required radius of curvature  of the virtual path segments
in terms of the obstacle width  and the obstacle distance :
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The corresponding sweep angle  for the curves is given by,

(26)

Consider an obstacle located  ahead of the driver’s
current position. For this obstacle distance and ,  eval-
uates to 92.5m. This is less than the minimum radius of curvature
(100m) that we allow for the roads over which we collect our hu-
man control data. Therefore, the obstacle avoidance task in part
tests each HCS model’s ability to operate safely outside the range
of its training data.

As an example, Figure 4 illustrates one HCS model’s response
to the virtual path created by an obstacle distance of 60m. Figure
4(a) plots the vehicle’s lateral distance from the road median
through the virtual path. We observe that on the virtual path, the
vehicle deviates sharply from the road median by over 4m. In ad-
dition, Figure 4(b) shows that the velocity of the car drops sub-
stantially from approximately 35m/sec to a low of about 23m/sec
on the virtual path. The model’s corresponding steering ( ) and
force ( ) outputs are plotted in Figure 4(c) and (d), respectively.

4.2 Lateral offset estimation

As we observed in Figure 4(a), a driving model may deviate
significantly from the center of the road during the obstacle avoid-
ance maneuver. Below, we derive the important relationship be-
tween the obstacle detection distance  and a model’s
corresponding maximum lateral deviation . First, we take
measurements of  for different values of , where we denote
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the ith measurement as . Next, we assume a polynomial
relationship of the form,

, (27)

where the  are additive measurement error. Then, we can write,

(28)

or, in matrix notation,

, where, (29)

, (30)

is the observation vector,

, (31)

is the regression matrix, and  is the error vec-
tor.

Assuming white noise properties for  (  and
 for all , ), we can minimize the least-

squares error criterion,

, (32)

with the optimal, unbiased estimate ,

, (33)

assuming that  is invertible.
For example, consider the HCS model from Figure 4. We plot

its measured  values for  ranging from 20 to 100 meters in
Figure 5. Superimposed on top of the measured data is the esti-
mated fifth-order relationship ( ) between  and . We
observe that the polynomial model fits the data closely and ap-
pears sufficient to express the relationship between  and .

4.3 Obstacle avoidance threshold

We note from Figure 5 that as the obstacle detection distance
decreases, the maximum lateral offset increases. Thus, for a given
model and initial velocity , there exists a value  be-
low which the maximum offset error will exceed the lane width

. We define the driving control for obstacle distances above
 to be stable; likewise, we define the driving control to be un-

stable for obstacle distances below .
Now, define an obstacle avoidance performance criterion ,

, (34)

where  is the velocity of the vehicle when the obstacle is
first detected. The  criterion measures to what extent a given
HCS model can avoid an obstacle while still controlling the vehi-
cle in a stable manner. The normalization by  is required,
because slower speeds increase the amount of time a driver has to
react and therefore avoiding obstacles becomes that much easier.

Below, we calculate the  performance criterion for three
HCS models, trained on real driving data from Tom, Dick, and
Harry, respectively. Figure 6 plots  as a fifth-order function of

 for the three different models. From Figure 6, it is easy to ap-
proximate  for each HCS model; thus, the corresponding
performance criterion for each model is,

(35)

(36)

(37)

Thus, as an obstacle avoider, Harry’s model clearly outperforms
Tom’s and Dick’s models, since  is the lowest perfor-
mance measure for the three models.

4.4 Obstacle avoidance velocity loss

The performance criterion  measures the stability of a par-
ticular HCS model in avoiding an obstacle. It does not, however,
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directly measure how skillfully the model avoids the obstacle.
Consider, for example, Figure 4(b). During the obstacle avoid-
ance maneuver, the velocity of the vehicle drops sharply so that
the model can adequately deal with the tight maneuvers required.
Below, we define a performance criterion  which measures the
distance lost as a result of this velocity drop:

, (38)

where  is the velocity before obstacle detection, and
is the time-dependent velocity during the obstacle avoid-

ance maneuver.
Consider once again the three HCS models for Tom, Dick and

Harry. Each model can successfully avoid the obstacle when
ranges from 50 to 100 meters. Figure 7 plots  for this range of

. Once again we observe that Harry’s model performs best when
evaluated with the  performance criterion, since its distance loss
is smaller for each  then either Tom’s or Dick’s model.

5. Tight turning

Here we analyze performance as a function of how well a par-
ticular HCS model is able to navigate tight turns. First, we define
a special road connection consisting of two straight-line segments
connected directly (without a transition arc segment) at an angle

. For small values of , each HCS model will be able to suc-
cessfully drive through the tight turn; for larger values of , how-
ever, some models will fail to execute the turn properly by
temporarily running off the road or losing complete sight of the
road.

Figure 8 illustrates for example, how Harry’s model transi-
tions through a tight turn for . Figure 8(a) plots
the two straight-line segments connected at an angle . The solid
line describes the road median, while the dashed line describes the
actual trajectory executed by Harry’s HCS model. The length of
the initial straight-line segment is chosen to be long enough
(150m) to eliminate transients by allowing the model to settle into
a stable state. This is equivalent to allowing the vehicle to drive
on a straight road for a long period of time before the tight turn

appears in the road. Figure 8(b) plots the lateral offset from the
road median during the tight-turn maneuver. Here, Harry’s model
maximally deviates about 8m from the road center. Both before
and after the turn, the lateral offset converges to zero. Figure 8(c)
plots the commanded steering angle for Harry’s HCS model, and
Figure 8(d) plots the corresponding change in velocity.

Now, define the maximum lateral offset error corresponding
to a tight turn with angle  to be . We want to determine a func-
tional relationship between  and  for a given HCS model.
First, we take  measurements of  for different values of ,
where we denote theith measurement as . Then, similar
to Section 4.2, we assume a polynomial relationship between
and  such that,

(39)

The least-squares estimate of the model  is given by,

, where, (40)

Fig. 6: Max. lateral offset for Dick’s, Tom’s and Harry’s model.
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(41)

(42)

(43)

For  ranging from  to  and assuming a
fifth-order model ( ), we arrive at the following estimate
for Harry’s model,

(44)

and the following estimate for Dick’s model,

(45)

Equations (44) and (45) are plotted in Figure 9. For a given road
width, we can determine the values of  for which each model
stays on the road. For example, assume a road width of 20m.
Then, the maximum allowable lateral offset is . From Fig-
ure 10 below, where the boundaries are explicitly drawn, we ob-
serve that Harry’s model can execute tight turns from -0.65rad to
1.05rad, while Dick’s model can only execute tight turns from -
0.45rad to 0.48rad. Thus, Harry’s model generates stable driving
for wider range of conditions than does Dick’s model.

We note that as a first-order approximation, we can define the
tight-turning performance criterion  to be,

(46)

where  is the linear coefficient in the fifth order model of equa-
tions (44) and (45), and smaller values of  indicate better perfor-
mance. In that case,

 and (47)

6. Conclusion

Modeling human control strategy analytically is difficult at
best. Therefore, an increasing number of researchers have resort-
ed to empirical modeling of human control strategy as a viable al-
ternative. This in turn requires that performance criteria be
developed, since few if any theoretical guarantees exist for these
models. In this paper, we develop several such criteria for the task
of human driving, including obstacle avoidance and tight-turning
performance criteria. We model human driving using the cascade
neural network architecture, and evaluate the performance of
driving models derived from different individuals using the devel-
oped performance criteria.

Acknowledgments

This work is supported in part by RGC Grant No. CUHK519/95E.

References

[1] M. Sugeno and T. Yasukawa, “A Fuzzy-Logic-Based Ap-
proach to Qualitative Modeling,”IEEE Transactions on
Fuzzy Systems, vol. 1, no. 1, 1993.

[2] U. Kramer, “On the Application of Fuzzy Sets to the Analy-
sis of the System-Driver-Vehicle-Environment,”Automati-
ca, vol. 21, no. 1, pp. 101-7, 1985.

[3] M. C. Nechyba and Y. Xu, “Human Control Strategy: Ab-
straction, Verification and Replication,” to appear inIEEE
Control Systems Magazine, October 1997.

[4] M. C. Nechyba and Y. Xu, “Stochastic Similarity for Vali-
dating Human Control Strategy Models,”Proc. IEEE Conf.
on Robotics and Automation, vol. 1, pp. 278-83, 1997.

[5] M. C. Nechyba and Y. Xu, “Cascade Neural Networks with
Node-Decoupled Extended Kalman Filtering,”Proc. IEEE
Int. Symp. on Computational Intelligence in Robotics and
Automation, vol. 1, pp. 214-9, 1997.

[6] S. E. Fahlman, L. D. Baker and J. A. Boyan, “The Cascade
2 Learning Architecture,” Technical Report, CMU-CS-TR-
96-184, Carnegie Mellon University, 1996.

ρ̂ ρ1 ρ2 … ρN, , ,[ ]T=

ζ̂

ζ1
p ζ1

p 1– … ζ1 1

ζ2
p ζ2

p 1– … ζ2 1

: : : : :

ζN
p ζN

p 1– … ζN 1

=

α̂ αp αp 1– … α0, , ,[ ]T=

ζ 4π– 9⁄ rad 4π 9⁄ rad
p 5=

ρ 2.78ζ5 0.584ζ4– 0.599ζ3– 4.286ζ2– +=

11.68ζ 0.330–

ρ 1.734– ζ5 1.076ζ4 2.258ζ3 0.243ζ2–+ + +=

21.29ζ 0.679–

−1.5 −1 −0.5 0 0.5 1 1.5
−50

−40

−30

−20

−10

0

10

20

30

40

Tight angle Rad

M
ax

im
um

 o
ffs

et
 o

f t
ur

ni
ng

Fig. 9:  Maximum lateral offset in tight turns for Dick’s and
Harry’s model.

Dick

Harry

ζ

10m±

J

J α1=

α1
J

JHarry 11.68= JDick 21.29=

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−30

−25

−20

−15

−10

−5

0

5

10

15

20

Tight angle Rad

M
ax

im
um

 O
ffs

et
 o

f T
ur

ni
ng

Fig. 10:  Harry’s model stays on the road for a greater range
of tight turns.

Dick

Harry


