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Abstract— Recently, we have implemented a computer-vision
based horizon-tracking algorithm for flight stability and au-
tonomy in Micro Air Vehicles (MAVs) [2]. Occasionally, this
algorithm fails in scenarios where the underlying Gaussian
assumption for the sky and ground appearances is not appro-
priate. Therefore, in this paper, we present a general statisical
image modeling framework, which we use to build prior
models of the sky and ground; once trained, these models can
be incorporated into our existing horizon-tracking aglorithm.
Since the appearances of the sky and ground vary enormously,
no single feature is sufficient for accurate modeling; as such,
we rely both on color and texture as critical features in
our modeling framework. Specifically, we choose hue and
intensity for our color representation, and the complex wavelet
transform (CWT) for our texture representation. We then use
Hidden Markov Tree (HMT) models, which are particularly
well suited for the CWT’s inherent tree structure, as our
underlying statistical models over our feature space. With
this approach, we have achieved reliable and robust image
segmentation of flight images from on-board our MAVs as well
as on more difficult-to-classify sky/ground images; furthermore,
we demonstrate the generality of our modeling framework
through another segmentation task.

I. I NTRODUCTION

In this paper, we seek to build statistical appearance mod-
els that will allow us to segment sky from ground in images
and flight video. This goal was inspired by our previous
work in horizon tracking for Micro Air Vehicles (MAVs)
[1], [2]. In that work, we developed a real-time, vision-
based horizon detection and tracking algorithm for MAVs
equipped with on-board video cameras. With this system, we
were able to achieve self-stabilized and autonomous flights
of MAVs, without any additional inertial or rate sensors. We
resorted to vision-based control, since such inertial and rate
sensors typically do not yet have the requisite accuracy at the
miniature scale required for MAVs, where weight of sensors
and other components is of paramount importance.

Overall, the horizon tracking algorithm works well, espe-
cially when the sky and ground distributions are relatively
coherent. Occasionally, however, horizon detection fails in
scenarios where the underlying Gaussian assumption for the
sky and ground appearances is not appropriate. Moreover,
the horizon detection algorithm is bootstrapped by assuming
that initially the sky occupies the upper part of the image. For
complex mission scenarios, this may be an incorrect assump-
tion with potentially fatal consequences to the flight vehicle.

For example, we are currently working on deploying MAVs
on munitions for post-impact bomb damage assessment.
In this case, the MAV would separate from the munition
prior to impact, and an upright attitude with respect to the
ground cannot be guaranteed. Correct identification of sky
and ground, therefore, becomes imperative.

While modeling the appearance of sky and ground re-
gions in images may seem intuitively easy, it is, in fact,
a very challenging task. Depending on lighting, weather,
landscape, etc., the appearance of the sky and ground can
vary enormously. Given the complex variations in our two
image classes (i.e. sky and ground), careful consideration
must be given to selecting sufficiently discriminating features
and a sufficiently expressive modeling framework. Having
experimented with color and texture features separately, we
conclude that only the feature set that includes both color
and texture clues enables accurate statistical modeling for
our application [3]. Previous experiments also suggest that
it is important to represent both local as well as regional
interdependencies in the feature space. As such, we resort
to wavelet-based multi-resolution analysis in the form of the
Complex Wavelet Transform (CWT).

Given our feature selection, we then choose the Hidden
Markov Tree (HMT) model [4], [5] as our statistical model,
since it is particularly well suited to the CWT’s inherent tree
structure. This choice of model imposes Markov dependen-
cies on the states of both color values and wavelet coeffi-
cients at adjacent scales of the pyramidal multi-resolution
structure. We train the HMTs with the EM algorithm [6]
to obtain a small set of parameters that fully characterize
the likelihoods of the two image classes at different scales.
Finally, we fuse the posterior likelihoods at each scale,
analogous to Choi’s [7] interscale fusion approach, and
perform Bayesian segmentation.

Our approach is distinguished from others, which use
wavelets exclusively, by the inclusion of color in the HMT
model structure. Incorporating color introduces a number of
differences between our models and those in the literature.
Moreover, the design of our statistical models was guided
by real-time requirements of our MAV flight system, leading
to certain design choices that may be sub-optimal if real-
time processing constraints had not been an issue. Although
it may appear that our vision algorithm is computationally



complex, we have come very close to meeting real-time
requirements for our MAVs. Correct segmentation of a
128×128 resolution image takes only a fraction of a second
on an Athlon 900MHz PC.

While this work was driven initially by our goal to model
sky and ground appearances, our modeling framework does
not restrict our work to this single case. To illustrate this, we
present image segmentation results not only for sky/ground
separation, but also for segmentation ofcut anduncut grass
regions; such segmentation capability may be useful, for
example, for an autonomous lawnmower system.

Below, we give an overview of this paper. In Section II,
we explain our choice of feature space, reviewing the most
important aspects of the HSI color space and properties of
the CWT. Next, in Section III, we describe the HMT model
and Bayesian multiscale segmentation. Then, in Section IV,
we present several examples of sky/ground andcut/uncut
grass segmentation. Finally, we conclude with a discussion
of our experimental results.

II. FEATURE SPACE

For our statistical models, we seek to identify features
that lead to improved segmentation performance without
unnecessarily increasing computational complexity. As we
have already mentioned, color or texture clues by themselves
yield poor segmentation results [3]; therefore, below we
consider a feature space that spans both color and texture
domains.

A. Color

The color information in a video signal is usually encoded
in the RGB color space. Unfortunately, the R, G and B
color channels are highly correlated; therefore, we choose
the HSI space as a more appropriate color representation
for statistical modeling [8]. In order to simplify our feature
space, we examine the Mahalanobis distances for the hue
(H), saturation (S) and intensity (I) values in sky and ground
training images. Denotingµ as the sample mean andσ 2 as
the sample variance, we compute:
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and observe that for various training data setsd2
H and

d2
I are consistently greater thand2

S [3]. Thus, to reduce
computational complexity, we choose only the features H
and I for our statistical model.

Next, we consider the representation of frequency, orienta-
tion and location of energy content in an image; in short, we

Fig. 1. The CWT is strongly oriented at angles±15◦,±45◦,±75◦.
The original image (left) and the magnitude of the CWT coefficients:
15◦, 45◦, 75◦ (center) and105◦, 135◦, 165◦ (right).

want to define texture-based features. As such, we employ
the wavelet transform, due it its inherent representation of
texture at different scales and locations.

B. Complex Wavelet Transform

The 2-D Complex Wavelet Transform (CWT) essentially
filters rows and columns of an image with a bank of complex
bandpass filters, similar to the conventional Discrete Wavelet
Transform (DWT) [9], [10]. Since, each coefficient contains
a real and imaginary part, a redundancy of 2:1 is introduced
for one-dimensional signals. For images, the redundancy in-
creases to 4:1, since two adjacent quadrants of the spectrum
are required to fully represent a real 2-D signal. This is
achieved by additional filtering with complex conjugates of
either row or column filters [11]–[13].

Despite its higher computational cost, we prefer the CWT
over the DWT because of the CWT’s following attractive
properties. Kingsbury [11] has shown that the Dual-Tree
CWT possesses near shift invariance, unlike the DWT, where
small shifts in the input signal induces major changes in
coefficient values. Also, the CWT’s directional selectivity is
greater, producing six bandpass subimages of complex coef-
ficients at each level. The coefficients are strongly oriented
at angles±15◦,±45◦,±75◦, as illustrated in Figure 1.

While it is known that the phase of CWT coefficients
is less susceptible to noise corruption than the coefficient
magnitudes [12], experimental results have shown that phase
is not a good feature choice for sky and ground modeling
[3]. Computing the phase of the CWT for orientation angles
±15◦,±45◦,±75◦, yields virtually indiscernible subimages
for sky and ground. Therefore, we consider only the magni-
tude of CWT coefficients in our representation of texture.

The magnitudes of CWT coefficients share the following
properties of the DWT [4], [6], [9], [10]:

1) Multi-resolution: CWT represents an image at different
scales of resolution in space.

2) Clustering: if the magnitude of a wavelet coefficient
is large/small, then the magnitudes of the adjacent
coefficients are very likely to also be large/small.

3) Persistence: large/small values of wavelet coefficients
tend to propagate through scales.



Fig. 2. The arrangement of the features: the original image (left), magnitudes of the15◦ and75◦ CWT and H values (center), magnitudes of the105◦ and
165◦ CWT and I values (right).

These properties naturally give rise to the HMT statistical
model, which helps us compute the distribution of pixels
belonging to different image classes (as described in the next
section).

To see which sets of orientations tend to be the most
discriminating between sky and ground, we once again
experiment with the Mahalanobis distances between sky
and ground coefficient magnitudes belonging to subimages
at different orientation. Computingd2

15◦ , d2
−15◦ , d2

45◦ , etc.,
similarly to the expressions in (1), we observe that for the
available sky and ground training imagesd2

45◦ and d2
−45◦

are consistently the least significant. Therefore, our complete
feature space is defined by the H and I color features and
the subimages with orientation±15◦ and±75◦. To benefit
from the multiscale presentation of the CWT, we replace the
missing±45◦ subimages with H and I images instead, as
shown in Figure 2. The H and I values at coarser scales are
computed as the mean of the corresponding four values at
the next higher-resolution scale. Hence, the H and I features
also exhibit theclustering andpersistence properties to some
extent.

Next we describe the HMT model as an appropriate
statistical framework for modeling our chosen feature set.

III. H IDDEN MARKOV TREE MODEL

The Hidden Markov Tree (HMT) structure can model
both theclustering and persistence properties of the CWT
coefficient magnitudes. It consists of a tree structureT that
assigns a node to each coefficient1 and connects mutually
dependent nodes. Thus, every parent node from coarser
scales is vertically connected with their four2 children at
the finer scale, as depicted in Figure 3. For instance, it is
obvious from the figure that

T15◦ = W0
15◦ ∪ W1

15◦ ∪ · · · ∪ W(L−1)
15◦ (2)

1Here, coefficient refers to the magnitude of CWT coefficients and/or the
H and I color values.

2Throughout the paper the CWT is assumed to be dyadic.
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Fig. 3. The three-level CWT with H values: four adjacent coefficients at
one scale have a unique parent belonging to the upper coarser scale. States
SJ

i are depicted as white balls and coefficient valueswJ
i as black balls.

Also, note from the figure that we assume that different fea-
tures are mutually independent. In other words, connecting
coefficients that belong only to the same feature, we obtain
six mutually independent probability trees:T15◦ , T75◦ , T105◦ ,
T165◦ , TH , andTI .

It is worth noting that we tried to implement the Mixture
Memory Markov Model, as proposed in [13], to account for
the dependencies between features (i.e. probability trees).
However, the slightly improved performance in image seg-
mentation did not justify the substantial increase in process-
ing time [3]. Also, we experimented with the HMT-2 model,
developed in [14], where a coefficient depends on its two
twin parents. Since the context-based fusion method used for
Bayesian classification incorporates nine parents (not only
two), segmentation performance did not improve with the
HMT-2. Finally, we note that while we do not consider
horizontal dependencies among nodes at the same scale,
the clustering property is still well modeled, since adjacent
coefficients at one scale have a unique parent.

In order to discuss HMT properties, we first need to in-
troduce the following notation. A coefficient of a probability
treeTt at a scaleJ is denoted withwJ

i,Tt
. A nodei has one



parent nodeρ(i) and four children nodesχ(i), such that
J(χ(i)) = J(i) − 1 andJ(ρ(i)) = J(i) + 1.

As is customary for HMTs [6], [15], we assign to each
observable random variable (RV)wJ

i,Tt
a hidden RV, state

SJ
i,Tt

, which determines the marginal distribution of the
observable coefficient value. The HMT imposes thatwJ

i,Tt

is conditionally independent of all other RVs given its
associated stateSJ

i,Tt
. Furthermore,wJ

i,Tt
is conditionally

independent of the entire tree, given its parent stateSJ+1
ρ(i),Tt

.
Note that the Markov structure is related to state RVs
between scales and not to coefficient values.

If we assume an M-state Gaussian mixture density for
the marginal distribution ofwJ

i,Tt
, the tree Tt is fully

characterized by the following parameters:

1) The probability measure function of the root node:
P (S0,Tt=m) , m∈[0, M − 1].

2) The transition probability that SJ
i,Tt

is in a
state m given that SJ+1

ρ(i),Tt
is in a state n:

an,m
(J+1),J,Tt

=P (SJ
i,Tt

=m|SJ+1
ρ(i),Tt

=n) , m∈[0, M−1],
n∈[0, M−1].

3) The mean and variance ofwJ
i,Tt

, given SJ
i,Tt

is in a
statem: µJ,Tt,m andσ2

J,Tt,m, m∈[0, M−1].
In order to simplify computations and to avoid the risk of
overfitting the HMT model, we assume that the statistical
parameters at the same scale are equal for all coefficients.
Therefore, the model parameters are indexed byJ , denoting
that they are equal for all nodesi at the scaleJ . Finally, we
group the parameters for all probability trees into a vector
Θ.

Unlike in [6], [7], we do not assume zero mean values,
since such an assumption would lead to substantial model
error, especially for the H feature that takes on values in
the interval[0, 360]. Also, much better image segmentation
is obtained if the number of possible statesM is greater
than 2; since this introduces only a negligible increase in
computation time, we letM > 2 (unlike in [6], [7]).

A. EM algorithm

Due to the Markov property and the assumption of proba-
bility tree independence, the most likely value forp(wJ

i |Θ),
can be computed by maximizing the joint likelihood:
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wheret takes on the values{±15◦,±75◦, H, I}.

The last expression shows all the HMT parameters
which must be learned from observations. For training
the HMT model, we implement the iterative Expectation-
Maximization (EM) algorithm, as proposed in [6]. In theE
step, the state information is propagated throughout the tree
by means of theupward-downward algorithm. Here, at stepl
of the algorithm, the expectation value of the log-likelihood
from (3) is computed as follows:

Q(Θ,Θl)=ESJ
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Then, in theM step, we compute

Θl+1 = arg max
Θ

Q
(
Θ,Θl

)
. (5)

It has been proved that increasing theQ-function is
sufficient to increase the likelihoodp(wJ

i |Θ) [16]. We are
not concerned with the convergence rate in the training
process, because our data base contains long sequences of
similar sky and ground images. Hence,Θ l, computed for
one image, is used as the input to computeΘ l+1 for the
next image of the training data base. Finally, after processing
all sky training images, we obtainΘsky , and similarly, for
ground,Θground.

Thus, the EM algorithm gives us the likelihoods of all
coefficients at all scales for a given class, say sky, as follows:

p(wJ
i |Θsky) =

∑
m

p(wJ
i , SJ

i =m|Θsky). (6)

Consequently, we are able to perform Bayesian classification
at all scales, without significant computational overhead.

B. Multiscale Bayesian Segmentation

Most segmentation algorithms employ a classification
window of some size, which provides statistical informa-
tion to a classifier. A large classification window produces
accurate segmentation of large, homogeneous regions, but
poor results along their boundaries. On the other hand, a
small window yields unreliable classification. In our case,
we require not only recognition of the sky and ground
regions, but als the detection of the horizon with as much
accuracy as possible. Therefore, both large and small scale
neighborhoods should be analyzed. Naturally, to benefit from
our already trained HMT model, we again resort to its
multiscale structure to perform segmentation. Thus, we im-
plement a multiscale segmentation algorithm, similar to the
one developed in [7]; however, we do not employ contexts,
and thus achieve much faster processing times. Also, the
dyadic squares of [7], in our case diminish in size to only
one coefficient. Both of these differences in approaches were
guided by our requirement for precise horizon-line detection
and real-time processing constraints.
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at the coarser scaleJ + 1.

First, for Θsky and Θground, we compute likelihoods,
as given by (6), for all coefficients at all scales. Then, by
the maximum-likelihood (ML) criterion, we assign to each
coefficient the labelsky or ground. Now we need to combine
the ML results at all scales for the final segmentation. For
that, we form a new Markov tree structure, but this time in
reverse order, as shown in Figure 4.

Here, a class label, denoted withCJ
i , plays a role analo-

gous to the hidden stateSJ
i in the HMT. In the tree3, every

class labelCJ
i has nine corresponding parents at the coarser

scaleCJ+1
ρ(i) . To facilitate computation, we assume thatCJ

i

class labels (i.e. ML results) are mutually independent. Our
Markov tree is completely characterized with thea priori
probabilities of the class labels at the coarsest scale, and
also with the transition probabilities between parent and
children labels. These values must be learned from the given
training images. To do this, we once again implement the EM
algorithm to estimate the prior and transition probabilities.
Finally, using the EM results for sky and ground images and
employing the Markov chain rule, we obtain the probability
measure functionP (C0

i = class), class∈{sky, ground}, for
all coefficients at the finest 0-th level. These values are
then used in a Bayes classifier to obtain the desired image
segmentation.

IV. RESULTS

For training the HMT model, we recorded two sets of
500 sky and ground images. We carefully chose the training
sets to account for great variability within classes. After
experimenting with different image resolutions, we found
that the best trade off between processing time and per-
formance was achieved for128×128 resolution images. At
that resolution, the training time on an Athlon 900MHz PC
was less than 3 minutes for both classes. In Figures 5-7
we present segmentation results for three diverse sky/ground
images; these results incorporated the Q-shift Dual-Tree
CWT introduced in [17].

3Note that in this case there is only one Markov tree, whereas for the
HMT there are six trees for six features.

Finally, we illustrate the generality of our algorithm in
segmentation ofcut/uncut grass regions (see Figure 8). These
images4 show a grass lawn from the perspective of a camera
mounted on an autonomous lawn mower. Even at image
resolutions as low as64×64, we achieve satisfactory results
at very fast processing speeds.

V. CONCLUSION

Segmentation of complex image classes, such as sky
and ground, demand an elaborate consideration of class
properties. Clearly, in some cases, color provides sufficient
information for sky and ground detection. However, due to
video noise and/or unfavorable class patterns, both color and
texture clues are necessary for successful recognition.

In this paper, we first presented our choice of features,
consisting of H and I values from the HSI color space,
and CWT coefficients. Then, we showed the implementation
of the HMT model and the training steps for obtaining its
parameters. We further described how the learned paremeter
set could be used for computing likelihoods of all nodes
at all scales of our HMT. We then developed multiscale
Bayesian classification for our application. We incorporated
in our design results from the available literature, modifying
the original algorithms for our purposes where appropriate.
Most importantly, we incorporated color features into the
HMT framework and designed the consequent classifier
with real-time constraints in mind. Finally, we show sample
classification results on diverse sky/ground images and on
cut/uncut grass images.
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