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Abstract

Much work in recent years has focused on transferring human
skill to robots by abstracting that skill into a machine-under-
standable, computational model. Such skill models, however, can
be used not only for transferring human control strategy to ro-
bots, but also for helping less-skilled human operators improve
their performance. We propose a two-step approach for transfer-
ring skill from human expert to human apprentice. An expert’s
relevant control strategies or skills are first abstracted into a sen-
sory-based computational model. Afterwards, this trained com-
putational model is used to generate on-line advice for less-
skilled operators who need to improve their skill. This advice can
take advantage of many different sensor modalities, thereby po-
tentially improving both the quality and speed of learning for the
apprentice. Furthermore, this approach allows for the efficient
transfer of skill from a single expert to many apprentices, as well
as from many experts to a single apprentice. In this paper, we first
describe a flexible neural-network-based method for modeling
human control strategy and provide motivation for its use. We
then present a case study for teaching control strategy from one
person to another in this two-step approach of transferring skill.

1. Introduction

Rapid advances in computer technology over the past decade
have not been paralleled by corresponding rapid advances in ro-
bot capabilities or the development of “intelligent machines.”
This disparity is principally caused by the difficulty of formaliz-
ing intelligent human behavior and decision making processes
into analgorithmic framework. Humans manage everyday tasks,
such as visual processing, manipulation, and mobility, with rela-
tive ease; yet robots have not duplicated that performance ade-
quately. Although humans are quite successful at executing these
tasks, they are far less successful in formally describing them. In
effect human skill remains locked away in the human mind where
it is of little use in the development of robot functionality.

As a result, much work has focused on learning computational
models of human skill so that human skill may be successfully
transferred to robots and machines. In [13], a car is taught to drive
autonomously, using a multilayer feedforward neural network to
map camera images of the road ahead to a steering direction. In
[2], a neural network learns the deburring task for a machining ro-
bot with training data from a human expert. In [12], we explore
human-to-robot skill transfer for a simple, dynamically stable sys-
tem. Hidden Markov Models (HMMs) have also been suggested
as a possible means for modeling human performance [14] at
higher levels of abstraction.

Models of human skill, however, can be used not only for trans-
ferring human control strategy to robots, but also for helping a
less-skilled operator improve performance. Just as a father might
guide his child’s arm in learning to throw a football, an expert’s
skill model can be used to guide the actions of a learning appren-
tice. Thus, we propose a two-step approach to transferring skill
from human expert to human apprentice. Sensory data is first col-
lected from a human expert who is able to successfully perform a
specified task; this data is then taken to train a neural network to
model the expert’s control strategy. Afterwards, the trained neural
network, rather than the expert, can be used to give on-line advice
to a less-skilled operator. Such advice can be given at each instant
in time, and can take one of many forms, based on the error be-
tween the apprentice’s control actions and those suggested by the
expert’s trained neural network.

Such an approach to transferring human skill offers several
benefits over direct expert-apprentice interaction. By abstracting
the expert’s skill into a computational model, the model-generat-
ed advice can take advantages of many different sensor modali-
ties, potentially improving both the speed and quality of learning
for the apprentice. Also, a single expert can efficiently train many
apprentices through the model of his/her skill. Conversely, a sin-
gle apprentice can efficiently benefit from the advice of many ex-
perts at once (Figure 1).

This paper is divided into two sections. First, we describe a
flexible, cascade neural network architecture for modeling dy-
namic human control strategy and provide motivation for its use
over more conventional feedforward neural networks. Second, we
present a detailed case study for training an apprentice from an ex-
pert indirectly by building a neural network-based computational
model as an intermediary between expert and apprentice.

2. Neural network learning

In modeling human control strategy, we wish to approximate
the functional mapping between sensory inputs and control action
outputs. Function approximation, in general, is composed of two
parts: (1) the selection of an appropriate functional form, and (2)
the adjustment of free parameters in the functional model to opti-
mize some criterion. For most neural networks used today, the
learning process consists of (2) only, since a specific functional
form is selected prior to learning; that is, the network architecture
is usually fixed before learning begins.

We believe, however, that both (1) and (2) above have a place
in the learning process. Thus, we look towards the flexible cas-
cade learning architecture [4], which adjusts the structure of the
neural network as part of learning, for modeling human control
strategy. The cascade learning architecture combines the follow-
ing two notions: (1) a cascade architecture, in which hidden units
are automatically added one at a time to an initially minimal net-



work, and (2) the learning algorithm which creates and installs
new hidden units as the learning requires in order to reduce the
sum-squared difference between the scaled unit outputs and the
residual error.

Network training proceeds as summarized below. Initially,
there are no hidden units in the network, only direct input-to-out-
put connections. These weights are trained first, thereby capturing
any linear relationship between the inputs and outputs. With no
further depreciable decrease in the error measure, a first hidden
unit will be added to the network from a pool ofcandidate units.
Using the quickprop algorithm [3], these candidate units are
trained independently and in parallel with different random initial
weights.

Again, after no more appreciable error reduction occurs, the
best candidate unit is selected and installed in the network. Once
installed, the hidden unit input weights are frozen, while the
weights to the output units are retrained. By freezing the input
weights for all previous hidden units, each training cycle is equiv-
alent to training a three-layer feedforward neural network with a
single hidden unit. This allows for much faster convergence of the
weights during training than in a standard backpropagation net-
work where many hidden unit weights are trained simultaneously.
The process is repeated until the algorithm succeeds in reducing
the sum-squared error sufficiently for the training set or the num-
ber of hidden units reaches a specified maximum number. Figure
2 below illustrates, for example, how a two-input, single-output
network grows as two hidden units are added.

Thus, the cascade architecture relaxesa priori assumptions
about the functional form of the model to be learned by dynami-
cally adjusting the network size. These assumptions can be further
relaxed by allowing new hidden units to have variable activation
functions [11][12]. In the pool of candidate units, we can assign a
different nonlinear activation function to each unit, rather than
just the standard sigmoidal function. During candidate training,
the algorithm will select for installment whichever candidate unit

reduces the sum-squared error of the training data the most.
Hence, the unit with the most appropriate activation function at
that point during training is selected. It was shown in [11], that the
theoretical properties for multilayer feedforward networks as uni-
versal function approximators hold for cascade networks with
variable activation functions.

Fig. 2: The cascade two learning architecture adds hidden
units one at a time. All connections are feedforward.

The performance of cascade networks with variable activation
functions is significantly better in both approximation error as
well as convergence rate, compared to cascade networks with
only sigmoidal hidden units, or standard multilayer feedforward
networks [11][12]. In addition, over repeated trials, it was found
that more than 80 percent of all the variable activation functions
chosen by the learning algorithm were of some sinusoidal type
(i.e sine or cosine). Due to this algorithmic preference for sinuso-
idal activation functions, cascade networks with exclusively sinu-
soidal units perform almost as well as cascade networks with
variable activation functions in both approximation error and
learning speed.

For various case studies of approximating known functions,
both variable cascade networks as well as sinusoidal cascade net-
works outperform sigmoidal cascade networks by a factor of 3 to
10 in approximation error, and learn approximately three times as
quickly. These cascade nets also outperform multilayer feedfor-
ward networks of comparable size (i.e. equivalent number of free
parameters) by a factor of 3 to 15 in approximation error and a
factor of 3 to 7 in learning speed [11][12]. Therefore, we feel well
motivated in preferring this learning architecture over others due
to (1) its efficiency in learning speed, (2) its flexibility in func-
tional form, and (3) its good function approximation properties.
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Fig. 1: Following the two-step approach in human-to-human
skill transfer allows one expert to teach many apprentices
(left) and many experts to contribute to the learning of a single
apprentice (right).



3. Neural network teaching

We focus on a simulated inverted pendulum system for study-
ing the transfer of human control strategy from an experienced,
expert user, to a less-experienced, less-skilled individual. Below,
we describe the experimental setup, the training of the neural net-
work from the expert, as well as the learning from the neural net-
work by the apprentice.

3.1 Experimental Setup

For these experiments, a user is shown an inverted pendulum-
cart system on a computer screen (Figure 3), and is able to control
the horizontal force to be applied to the cart via the horizontal
mouse position. The horizontal forceu that may be applied is lim-
ited to , where the dynamics of the system are
given in [12]. The angle  is defined as the deviation from the
vertical position; in Figure 3, for example, the angle of the pendu-
lum is . We simulate the system using the Euler approxi-
mation at a frequency of 100Hz, while the task for the user is to
keep the pendulum from falling over.

While the expert is controlling the inverted pendulum, the “NN
advice,” “verbal advice,” and “error over time” portions of the
display in Figure 3 are not shown. That is, the expert is given no
advice on how to stably control the system. By “expert,” we refer
to those people who keep the inverted pendulum from falling for
longer than 30 seconds. The control of the system is difficult
enough so that some three fourth of the people (about 20) who at-
tempted to control the system failed, even after repeated attempts.

Data from successful runs are then taken to train cascade net-
works to model the expert control strategy. Afterwards, these
trained networks are used to give on-line advice to less-skilled op-
erators at each time step. The user can choose one of a number of
trained expert cascade networks for guidance. In Figure 3, that
guidance appears in several formats. The “NN advice” portion of
the display graphically illustrates the control that each of the ex-
pert cascade networks for Larry, Curly and Moe would execute at
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Fig. 3: This interface was used to (1) collect training data, and (2) for training a less skilled individual using
a neural network.

error over time
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that instant in time. The “verbal advice” indicates a suggested
control correction verbally based on one of the expert cascade net-
works. Finally, the “error over time” portion of the display pro-
vides a time history of the error between the user’s control actions
and those suggested by one of the expert cascade networks.

3.2 Human Control Strategy Modeling

In all, five different people succeeded in controlling the pendu-
lum simulation for longer than 3000 time steps, or 30 seconds in
a single trial: Larry, Curly, Moe, Groucho, and Harpo. From each
person’s training run, 1500 data points were randomly selected to
train cascade networks, while another 1500 data points were used
for cross validation. The networks to be trained are provided 11
inputs, namely, the past 10 values of  [9][10], as well as the ve-
locity of the cart ,

(Eq. 1)

As output, the networks are to generate the horizontal force to be
applied at the next time step, . Learning was stopped af-
ter the error in the cross validation set no longer decreased.

Over many trials, all trained cascade networks formed stable
trajectories for initial values in at least some region of the com-
plete state space. That is, the cascade networks are able to suc-
cessfully abstract the essential features of each person’s control
strategy. Furthermore, Table 1 illustrates good generalizing prop-
erties of the resulting cascade networks. The first two data col-
umns list the range of  values in the training data presented to
each cascade network. The third and fourth data columns compare
these ranges to the minimum and maximum initial  values for
which the best resulting cascade networks converge to a stable
trajectory. These values indicate that the cascade networks appear
to generalize very well to states outside the range of the training
data.

Below, we show how learning proceeds as hidden units are
added to the cascade network. Figure 4, for example, shows part
of the training run for Groucho.
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Table 1: Generalization of Control Strategies

Range of  in
training data

Range of initial  for
stable trajectories in

best cascade networks

Larry

Curly

Moe

Groucho

Harpo

θ θ

θmin θmax θmin θmax

24.4°– 36.2° 76.8°– 76.7°

24.9°– 30.2° 78.5°– 77.6°

24.5°– 31.2° 76.4°– 76.0°

31.1°– 19.4° 69.8°– 67.7°

21.9°– 21.2° 84.1°– 83.7°

Fig. 4: Training data for cascade network from Groucho.
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Figures 5(a)-(c) show the pendulum trajectory (in phase space)
generated by Groucho’s cascade network for .
Figure 5(a) corresponds to the cascade network at one hidden
unit; Figure 5(b) corresponds to six hidden units; and Figure 5(c)
corresponds to 11 hidden units.

With only one hidden unit, the cascade network model is forced
to be nearly linear. The resulting pendulum trajectory is therefore
smooth and convergent, and can bear little resemblance to the
training trajectory (Figure 4). By the time six hidden units have
been added to the network, the trajectory pattern is beginning to
show initial indications of nonlinear behavior. At eleven hidden
units, the resulting pendulum trajectory forms a nonconvergent,
stable attractor, with significantly more intricate and nonlinear
behavior. Some of the finer details of Groucho’s control strategy
now begin to emerge.

Thus, the cascade network learning process allows one to
choose from a number of resulting models of the human’s control
strategy, ranging from simple to complex. One may be interested
in both a coarse approximation of the control behavior, as well as
more detailed models which expose long-term nonlinear patterns
of behavior. By examining the magnitude of the weights in the
simple cascade network with one hidden unit, for example, one
can observe that the important inputs for the neural network in the
sequence,
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Fig. 5: Pendulum trajectory in phase space for Groucho’s
network with (a) one, (b) six, and (c) eleven hidden units.

θ rad( )

θ̇
ra

d/
s

(
)

(a)

θ rad( )

θ̇
ra

d/
s

(
)

(c)

θ rad( )

θ̇
ra

d/
s

(
)

(b)

(Eq. 2)

are in fact,

(Eq. 3)

and, moreover, together, they form a first-order derivative. On the
other hand, the more complex eleven-hidden-unit network ex-
poses a long-term control strategy which more closely resembles
that of the original training data, and therefore gives a truer model
of the human control strategy. Each network of increasing com-
plexity imparts different important information about the under-
lying human model.

3.3 Human Control Strategy Transfer

We are now interested in using one of the models of an expert’s
human control strategy in order to teach a less skilled individual
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Second, we train a cascade network on one of Zipo’s post-train-
ing successful runs, and compare, at each time step, the control
action of Zipo’s network versus the control actions of the other
networks for trajectories with various initial conditions. Predict-
ably, Zipo’s and Curly’s networks compare the closest, as is sum-
marized in Table 3 below.

4. Discussion

The results in the previous two sections give some empirical
evidence that (1) cascade networks are capable of abstracting hu-
man control strategy to various level of detail, and (2) that these
networks can function as teaching tools for less skilled individu-
als. Although, the case study presented in this paper is limited, it
does suggest that the two-step paradigm for human-to-human
transfer of skill is a valid one, and that it may offer benefits be-
yond those of direct expert-to-apprentice instruction. A number of
interesting areas for future research arise.

First, we note that even for this relatively simple simulation of
an inverted pendulum, the expert-based control strategy is pre-
ferred by the apprentice for learning over other, more convention-
al mathematical models, such as a nonlinear partitioned control
law. Although a mathematically derived control strategy may be
more optimal in some sense, it fails as a teacher because (1) it re-
lies on precision of which neither the human nor the human-com-
puter interface is capable, and (2) a human’s reaction times are
necessarily slower than the internal simulation speed. Thus, even
when good mathematical control laws exist for a given problem,
human-based models are still required for human-to-human trans-
fer of skill.

to successfully control the inverted pendulum system. Two prin-
cipal causes for failure in the stable control of the system are (1)
overreaction, (i.e. the “control gains” are too high), and (2) force
limits (in the interface) which do not allow recovery from error.
Thus, in order to successfully control the system, a human opera-
tor must deal effectively with these two problems.

One of the individuals (Zipo) who had repeatedly failed in con-
trolling the simulation for the reasons cited above was asked to
train himself by getting constant feedback advice in the form of a
visual display (as explained in section 3.1 above) during the sim-
ulation runs. This advice would be generated by one of the previ-
ously trained cascade networks.

First, Zipo experimented with different cascade networks from
which to train. Eventually, he settled on a cascade network with
two hidden units from Curly. This model was chosen because the
“recommended” control forces were (1) relatively small and (2)
varied relatively smoothly compared to other networks. The mod-
el was also tested independently and converged from a wide range
of extreme initial states.

Zipo then spent one hour learning from the cascade network
model by observing the “recommended” control force as he was
controlling the cart on the simulation display (see Figure 3). The
length of each consecutive successful trial increased steadily,
where, near the end of learning, successful trials of up to 220 sec-
onds were achieved.

At the conclusion of training with the visual aids, the “advice”
portions of the interface were then turned off, and Zipo was left to
control the system on his own once again. Without help, Zipo now
demonstrated the ability to control the simulation virtually indef-
initely, with only patience and eye fatigue being limiting factors.
Thus, a person who had previously failed in repeated trials to con-
trol the simulation successfully, had now managed to learn a sta-
ble control strategy with the advice of an expert-trained neural
network. Figures 6(a)-(b) below shows one portion of a post-
training successful run. Fromt=262 sec to t=269 sec, it is clear
that Zipo has, at least to some extent, learned how to deal with ex-
treme conditions (i.e a large  value) without overreacting and
within the confines of limited force.

Below, we analyze how closely Zipo did adopt the control
strategy of Curly. First, we take one of the long post-training suc-
cessful runs (of about 285 seconds), and compare, at each time
step, the “recommended” control actions for the fully trained cas-
cade networks of Larry, Curly, Moe, Groucho, and Harpo. Table
2 below summarizes those results. The control actions of Zipo do
approximate, most closely, those of Curly, as the mean RMS error
is the lowest for Curly’s cascade networks.

Table 2: Comparison of Control Strategies

# networks tested Mean. RMS error

Larry 10 4.76

Curly 10 2.96

Moe 10 6.95

Groucho 10 3.23

Harpo 10 4.44
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Fig. 6: (a) Segment of pendulum trajectory for learned control
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ability to deal with overreaction and limited force.
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5. Conclusion

Modeling expert human control strategies for challenging dy-
namic tasks in order to train less skilled individuals is an impor-
tant application of intelligent control and system modeling
research. It relieves the burden on the expert, as well as allows
many more apprentices to benefit indirectly from the skilled ad-
vice of a single expert. In addition, the control strategy model may
afford the opportunity to provide a more diverse array of sensory
feedback to the apprentice. This could both accelerate learning as
well as improve the quality of the learned skill.
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a. Confidence interval for difference in mean RMS error,
based on apprentice’st-test, between Curly’s and the
other networks.

Table 3: Comparison of Control Strategies

# cascade
networks

tested

Mean RMS
error

95%
confidence
interval a

Larry 10 3.90 [1.60, 2.01]

Curly 10 2.10 ---

Moe 10 4.93 [2.57, 3.09]

Groucho 10 2.25 [0.03, 0.29]

Harpo 10 3.29 [0.98, 1.41]

Second, a number of interesting issues arise in both the collec-
tion of sensory data from humans, as well as the best sensor mo-
dalities to exploit in providing feedback to a apprentice. For the
case study presented in this paper, the sensory data from the hu-
man was easy to collect, since we needed only to measure the po-
sition of the mouse. In more complicated examples, however,
where part or all of the human body may be involved in a control
strategy, we might be required to monitor the motion of key points
(i.e. joints, perhaps) on the entire body. Additionally, these sen-
sors must be as nonintrusive as possible, lest by observing control
strategy, we actually alter it.

The type of feedback advice provided to a apprentice is also a
critical issue. For our example, the feedback was provided visual-
ly and/or verbally. A apprentice may be tempted, however, to be-
gin to rely too much on the feedback signal, and to focus too little
on the task at hand. In our case, Zipo was continually reminded to
pay as much or more attention to the consequences of his control
actions, as to the advice by Curly’s cascade network. Thus, initial-
ly a apprentice can rely heavily on the feedback advice, and as
time goes on, begin to rely less and less on that advice.

The feedback advice should, in general, be structured so as to
make it as difficult as possible to rely too heavily on the feedback.
For the case study presented in this paper, another possibility for
sensor feedback might have been to play a sound whose frequen-
cy would be proportional to the error between the apprentice’s
control action and the cascade network’s advice. Different sen-
sors, the eyes for controlling the simulation and the ears for re-
ceiving feedback on performance, rather than just the eyes, would
therefore have been utilized by the apprentice in learning. Clearly,
more work needs to be done in exploring which sensor modalities
lead to the best and fastest learning.

Finally, human-to-human transfer of control strategies or skill
is, by far, a more difficult proposition than human-to-robot trans-
fer of skill. Robots make better apprentices in the sense that they
require no special interfaces, generally have the ability to measure
their state with greater precision than humans, and can follow
commands, without pause, at a faster rate than humans. Conse-
quently, progress in transferring skill from one human to another
human will lead to additional progress in transferring skill from
humans to robots.


