Introduction to the Discrete Wavelet Transform (DWT)
(last edited 02/15/2004)

1 Introduction

This is meant to be a brief, practical introduction to the discrete wavelet transform (DWT), which aug-
ments the well written tutorial paper by Amara Graps [1]. Therefore, this document is not meant to be
comprehensive, but does include a discussion on the following topics:

1. Qualitative discussion on the DWT decomposition of a signal;
2. Procedure for computing the forward and inverse DWT; and

3. The 2D DWT.

2 DWT decomposition

In Fourier analysis, the Discrete Fourier Transform (DFT) decompose a signal into sinusoidal basis functions
of different frequencies. No information is lost in this transformation; in other words, we can completely
recover the original signal from its DFT (FFT) representation.

In wavelet analysis, the Discrete Wavelet Transform (DWT) decomposes a signal into a set of mutually
orthogonal wavelet basis functions. These functions differ from sinusoidal basis functions in that they are
spatially localized — that is, nonzero over only part of the total signal length. Furthermore, wavelet functions
are dilated, translated and scaled versions of a a common function ¢, known as the mother wavelet. As is
the case in Fourier analysis, the DWT is invertible, so that the original signal can be completely recovered
from its DWT representation.

Unlike the DFT, the DWT, in fact, refers not just to a single transform, but rather a set of transforms,
each with a different set of wavelet basis functions. Two of the most common are the Haar wavelets and
the Daubechies set of wavelets. For example, Figures 1 and 2 illustrate the complete set of 64 Haar and
Daubechies-4 wavelet functions (for signals of length 64), respectively. Here, we will not delve into the details
of how these were derived; however, it is important to note the following important properties:

1. Wavelet functions are spatially localized;
2. Wavelet functions are dilated, translated and scaled versions of a common mother wavelet; and

3. Each set of wavelet functions forms an orthogonal set of basis functions.

3 DWT in one dimension

In this section, we describe the algorithm for computing the one-dimensional DWT and its inverse.
3.1 Forward DWT

The (one-dimensional) DWT operates on a real-valued vector z of length 2", n € {2,3,...}, and results in
a transformed vector w of equal length. Figure 3(a) and (b) illustrate the first two steps of the DWT for a
vector of length 16. First, the vector x is filtered with some discrete-time, low-pass filter (LPF) h of given
length (in the Figures, we use length four for illustration purposes) at intervals of two, and the resulting
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Figure 3: (a) First step of the DWT for a signal of length 16: The original signal is low-pass filtered in
increments of two, and the resulting coefficients are grouped as the first eight elements of the vector. (b)
Second step of the DWT: The original signal is high-pass filtered in increments of two, and the resulting
coefficients are grouped as the last eight elements of the vector.

values are stored in the first eight elements of w. This step is illustrated in Figure 3(a). Second, the vector =
is filtered with some discrete-time, high-pass filter (HPF) g of given length (again, for illustration purposes,
we use a filter of length four) at intervals of two, and the resulting high-pass values are stored in the last
eight elements of w. This step is illustrated in Figure 3(b).

Note, qualitatively, how this procedure transforms the vector x. The low-pass part of the vector w is
essentially a down-sampled version (down-sampled by a factor of two) of the original signal x, while the
high-pass part of the vector w detects and localizes high frequencies in x. If we were to stop here, the vector
w would be a one-level wavelet transform of x. We need not, however, stop here; the low-pass filtered part of
w (first eight elements for this example) can be further transformed using the identical procedure as outlined
above and shown in Figure 3. Figure 4, for example, illustrates a three-level, one-dimensional DWT.

Note that in the final transform ws, values L3 are the result of three consecutive low-pass filters, values Hj
are the result of two consecutive low-pass filtering operations followed by a high-pass filter, values Hy are the
result of a low-pass filter followed by a high-pass filter, and values H; are the result of one high-pass filter.
Therefore, the highest frequencies will be isolated and localized in values H; of ws, intermediate frequencies
will be isolated and localized in values Hy of ws, etc. Note that for lower frequencies, the resolution is
decimated by half for each level of the wavelet transform. Thus, the DWT operation implicitly recognizes that
lower frequencies cannot be localized at the same resolution as higher frequencies (see Heisenberg Uncertainty
Principle). In summary, the one-dimensional DWT is a multi-resolutional frequency decomposition and
localization of a one-dimensional, discrete-time signal.
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Figure 4: Three-level wavelet transform on signal = of length 16. Note that from w; to ws, coefficients Hy
remain unchanged, while from ws to ws, coefficients H; and Hy remain unchanged.

3.2 Filter coefficients

Thus far, we have remained silent on a very important detail of the DWT — namely, the construction of
the low-pass filter h, and the high-pass filter g. Obviously, the filter coefficients for h and g cannot assume
arbitrary values, but rather have to be selected carefully in order to lead to basis functions, such as those in
Figures 1 and 2, with the necessary properties of compactness (i.e. spatial localization) and orthogonality.

The derivation of filter coefficients is beyond the scope of this introduction; for an understandable discussion
and derivation see [2]. However, we note that filter coefficients for h and g should be related as follows:

gk = (1) hp_r—1, k€ {0,...,n — 1}, (1)

where n denotes the length of the filter. For example, for filter lengths 2, 4 and 6:

h=lco a] = g=[a —c (2)
=0 aa @ ] = g=l -2 a —c (3)
h = [co c1 Cy C3 ¢4 05] = g= [05 —Cc4 €3 —C2 C1 —co] (4)

The simplest wavelet filter is the Haar filter, where h is given by,

1 1
h = {W ﬁ} . (5)
This filter gives rise to basis functions of the type shown in Figure 1. Another very popular set of wavelet

filters is due to Daubechies. The most compact of these has four coefficients (Daubechies-4), where h is given
by,

h— [(1+\/§) B+Vv3) (3=v3) (1-V3) } (6)
44/2 42 42 4/2 :

This filter gives rise to basis functions of the type shown in Figure 2; they will, of course, differ depending on

the length of the signal x. Other Daubechies filters of length n, n € {6,8,10,...} are also derivable; again,

for a discussion and derivation of these filter coefficients, see [2].



. ([
N O O DO noono
4-coefficient HPF g D:I::I
LLTT]

LLTTT]

[T T]
[T 1]

4-coefficient LPF h'!

(a) (b)

Figure 5: Ilustration of the inverse DWT for a one-level DWT w of length 16. First, the low-pass and
high-pass elements of w are interleaved. Then, (a) the inverse low-pass filter h=! is applied in increments of
two, and (b) the inverse high-pass filter g~! is applied in increments of two.

3.3 Inverse DWT

To understand the procedure for computing the one-dimensional inverse DWT, consider Figure 5, where we
illustrate the inverse DWT for a one-level DWT of length 16 (assuming filters of length four). Note that the
two filters are now h~! and g—! where,

1,3,...
ot = Reilsd,...} (7
hp—r—1 k€ {0,2,...}

~

1

and g~ is determined from h~! using equation (1).

To understand how to compute the one-dimensional inverse DWT for multi-level DWTs, consider Figure 4.
First, to compute wy from ws, the procedure in Figure 5 is applied only to values Ls and Hjs. Second, to
compute wy from we, the procedure in Figure 5 is applied to values Lo and Hs. Finally, to compute x from
w1, the procedure in Figure 5 is applied to all of wy — namely, L1 and H;.

4 DWT in two dimensions

In this section, we describe the algorithm for computing the two-dimensional DWT through repeated appli-
cation of the one-dimensional DWT. The two-dimensional DWT is of particular interest for image processing
and computer vision applications, and is a relatively straightforward extension of the one-dimensional DWT
discussed above.
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Figure 6: One-level, two-dimensional DWT. First, the one-dimensional DWT is applied along the rows;
second, the one-dimensional DWT is applied along the columns of the first-stage result, generating four
sub-band regions in the transformed space: LL, LH, HL and HH.

Figure 6 illustrates the basic, one-level, two-dimensional DWT procedure. First, we apply a one-level, one-
dimensional DWT along the rows of the image. Second, we apply a one-level, one-dimensional DWT along
the columns of the transformed image from the first step. As depicted in Figure 7 (left), the result of these
two sets of operations is a transformed image with four distinct bands: (1) LL, (2) LH, (3) HL and (4)
HH. Here, L stands for low-pass filtering, and H stands for high-pass filtering. The LL band corresponds
roughly to a down-sampled (by a factor of two) version of the original image. The LH band tends to preserve
localized horizontal features, while the HL band tends to preserve localized vertical features in the original
image. Finally, the HH band tends to isolate localized high-frequency point features in the image.

As in the one-dimensional case, we do not necessarily want to stop there, since the one-level, two-dimensional
DWT extracts only the highest frequencies in the image. Additional levels of decomposition can extract lower
frequency features in the image; these additional levels are applied only to the LL band of the transformed
image at the previous level. Figure 7 (right) for example illustrates the three-level, two-dimensional DWT
on a sample image.

For many examples and further exploration of the DWT, please see the materials at the following link:

http://mil.ufl.edu/ "nechyba/eel6562/course_materials.html
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Figure 7: Two-dimensional wavelet transform: (left) one-level 2D DWT of sample image, and (right) three-
level 2D DWT of the same image. Note that the LH bands tend to isolate horizontal features, while the HL
band tend to isolate vertical features in the image.



