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1 Introduction

This is meant to be a brief, practical introduction to the discrete wavelet transform (DWT), which aug-
ments the well written tutorial paper by Amara Graps [1]. The refore, this document is not meant to be
comprehensive, but does include a discussion on the following topics:

1. Qualitative discussion on the DWT decomposition of a signal;

2. Procedure for computing the forward and inverse DWT; and

3. The 2D DWT.

2 DWT decomposition

In Fourier analysis, the Discrete Fourier Transform (DFT) d ecompose a signal into sinusoidal basis functions
of di�erent frequencies. No information is lost in this tran sformation; in other words, we can completely
recover the original signal from its DFT (FFT) representati on.

In wavelet analysis, the Discrete Wavelet Transform (DWT) decomposes a signal into a set of mutually
orthogonal wavelet basis functions. These functions di�er from sinusoidal basis functions in that they are
spatially localized { that is, nonzero over only part of the total signal length. Furthermore, wavelet functions
are dilated, translated and scaled versions of a a common function� , known as the mother wavelet. As is
the case in Fourier analysis, the DWT is invertible, so that the original signal can be completely recovered
from its DWT representation.

Unlike the DFT, the DWT, in fact, refers not just to a single tr ansform, but rather a set of transforms,
each with a di�erent set of wavelet basis functions. Two of the most common are theHaar wavelets and
the Daubechiesset of wavelets. For example, Figures 1 and 2 illustrate the complete set of 64 Haar and
Daubechies-4 wavelet functions (for signals of length 64),respectively. Here, we will not delve into the details
of how these were derived; however, it is important to note the following important properties:

1. Wavelet functions are spatially localized;

2. Wavelet functions are dilated, translated and scaled versions of a common mother wavelet; and

3. Each set of wavelet functions forms an orthogonal set of basis functions.

3 DWT in one dimension

In this section, we describe the algorithm for computing theone-dimensional DWT and its inverse.

3.1 Forward DWT

The (one-dimensional) DWT operates on a real-valued vectorx of length 2n , n 2 f 2; 3; : : : g, and results in
a transformed vector w of equal length. Figure 3(a) and (b) illustrate the �rst two s teps of the DWT for a
vector of length 16. First, the vector x is �ltered with some discrete-time, low-pass �lter (LPF) h of given
length (in the Figures, we use length four for illustration purposes) at intervals of two, and the resulting
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Figure 1: Haar wavelet basis functions (length 64).
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Figure 2: Daubechies-4 wavelet basis functions (length 64).
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(a) (b)

Figure 3: (a) First step of the DWT for a signal of length 16: The original signal is low-pass �ltered in
increments of two, and the resulting coe�cients are grouped as the �rst eight elements of the vector. (b)
Second step of the DWT: The original signal is high-pass �ltered in increments of two, and the resulting
coe�cients are grouped as the last eight elements of the vector.

values are stored in the �rst eight elements ofw. This step is illustrated in Figure 3(a). Second, the vectorx
is �ltered with some discrete-time, high-pass �lter (HPF) g of given length (again, for illustration purposes,
we use a �lter of length four) at intervals of two, and the resulting high-pass values are stored in the last
eight elements ofw. This step is illustrated in Figure 3(b).

Note, qualitatively, how this procedure transforms the vector x. The low-pass part of the vector w is
essentially a down-sampled version (down-sampled by a factor of two) of the original signal x, while the
high-pass part of the vectorw detects and localizes high frequencies inx. If we were to stop here, the vector
w would be aone-levelwavelet transform of x. We need not, however, stop here; the low-pass �ltered part of
w (�rst eight elements for this example) can be further transformed using the identical procedure as outlined
above and shown in Figure 3. Figure 4, for example, illustrates athree-level, one-dimensional DWT.

Note that in the �nal transform w3, valuesL 3 are the result of three consecutive low-pass �lters, valuesH3

are the result of two consecutive low-pass �ltering operations followed by a high-pass �lter, valuesH2 are the
result of a low-pass �lter followed by a high-pass �lter, and values H1 are the result of one high-pass �lter.
Therefore, the highest frequencies will be isolated and localized in valuesH1 of w3, intermediate frequencies
will be isolated and localized in valuesH2 of w3, etc. Note that for lower frequencies, the resolution is
decimated by half for each level of the wavelet transform. Thus, the DWT operation implicitly recognizes that
lower frequencies cannot be localized at the same resolution as higher frequencies (see Heisenberg Uncertainty
Principle). In summary, the one-dimensional DWT is a multi- resolutional frequency decomposition and
localization of a one-dimensional, discrete-time signal.
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Figure 4: Three-level wavelet transform on signalx of length 16. Note that from w1 to w2, coe�cients H1

remain unchanged, while fromw2 to w3, coe�cients H1 and H2 remain unchanged.

3.2 Filter coe�cients

Thus far, we have remained silent on a very important detail of the DWT { namely, the construction of
the low-pass �lter h, and the high-pass �lter g. Obviously, the �lter coe�cients for h and g cannot assume
arbitrary values, but rather have to be selected carefully in order to lead to basis functions, such as those in
Figures 1 and 2, with the necessary properties ofcompactness(i.e. spatial localization) and orthogonality.

The derivation of �lter coe�cients is beyond the scope of thi s introduction; for an understandable discussion
and derivation see [2]. However, we note that �lter coe�cients for h and g should be related as follows:

gk = ( � 1)k hn � k � 1; k 2 f 0; : : : ; n � 1g; (1)

where n denotes the length of the �lter. For example, for �lter lengt hs 2, 4 and 6:
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The simplest wavelet �lter is the Haar �lter, where h is given by,

h =
h
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i
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This �lter gives rise to basis functions of the type shown in Figure 1. Another very popular set of wavelet
�lters is due to Daubechies. The most compact of these has four coe�cients (Daubechies-4), whereh is given
by,
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This �lter gives rise to basis functions of the type shown in Figure 2; they will, of course, di�er depending on
the length of the signal x. Other Daubechies �lters of length n, n 2 f 6; 8; 10; : : : g are also derivable; again,
for a discussion and derivation of these �lter coe�cients, see [2].
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(a) (b)

Figure 5: Illustration of the inverse DWT for a one-level DWT w of length 16. First, the low-pass and
high-pass elements ofw are interleaved. Then, (a) the inverse low-pass �lter h� 1 is applied in increments of
two, and (b) the inverse high-pass �lter g� 1 is applied in increments of two.

3.3 Inverse DWT

To understand the procedure for computing the one-dimensional inverse DWT, consider Figure 5, where we
illustrate the inverse DWT for a one-level DWT of length 16 (assuming �lters of length four). Note that the
two �lters are now h� 1 and g� 1 where,

h� 1
k =

(
hk k 2 f 1; 3; : : : g
hn � k � 1 k 2 f 0; 2; : : : g

(7)

and g� 1 is determined from h� 1 using equation (1).

To understand how to compute the one-dimensional inverse DWT for multi-level DWTs, consider Figure 4.
First, to compute w2 from w3, the procedure in Figure 5 is applied only to valuesL 3 and H3. Second, to
compute w1 from w2, the procedure in Figure 5 is applied to valuesL 2 and H2. Finally, to compute x from
w1, the procedure in Figure 5 is applied to all ofw1 { namely, L 1 and H1.

4 DWT in two dimensions

In this section, we describe the algorithm for computing thetwo-dimensional DWT through repeated appli-
cation of the one-dimensional DWT. The two-dimensional DWT is of particular interest for image processing
and computer vision applications, and is a relatively straightforward extension of the one-dimensional DWT
discussed above.
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Figure 6: One-level, two-dimensional DWT. First, the one-dimensional DWT is applied along the rows;
second, the one-dimensional DWT is applied along the columns of the �rst-stage result, generating four
sub-band regions in the transformed space: LL, LH, HL and HH.

Figure 6 illustrates the basic, one-level, two-dimensional DWT procedure. First, we apply a one-level, one-
dimensional DWT along the rows of the image. Second, we applya one-level, one-dimensional DWT along
the columns of the transformed image from the �rst step. As depicted in Figure 7 (left), the result of these
two sets of operations is a transformed image with four distinct bands: (1) LL, (2) LH, (3) HL and (4)
HH. Here, L stands for low-pass �ltering, and H stands for high-pass �ltering. The LL band corresponds
roughly to a down-sampled (by a factor of two) version of the original image. The LH band tends to preserve
localized horizontal features, while the HL band tends to preserve localized vertical features in the original
image. Finally, the HH band tends to isolate localized high-frequency point features in the image.

As in the one-dimensional case, we do not necessarily want tostop there, since the one-level, two-dimensional
DWT extracts only the highest frequencies in the image. Additional levels of decomposition can extract lower
frequency features in the image; these additional levels are applied only to the LL band of the transformed
image at the previous level. Figure 7 (right) for example illustrates the three-level, two-dimensional DWT
on a sample image.

For many examples and further exploration of the DWT, pleasesee the materials at the following link:

http://mil.ufl.edu/~nechyba/eel6562/course_material s.html
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Figure 7: Two-dimensional wavelet transform: (left) one-level 2D DWT of sample image, and (right) three-
level 2D DWT of the same image. Note that the LH bands tend to isolate horizontal features, while the HL
band tend to isolate vertical features in the image.

8


