
Abstract
In this paper, we describe a statistical method for 3D object

detection.   We represent the statistics of both object appear-
ance and “non-object” appearance using a product of histo-
grams. Each histogram represents the joint statistics of a subset
of wavelet coefficients and their position on the object.  Our
approach is to use many such histograms representing a wide
variety of visual attributes.  Using this method, we have devel-
oped the first algorithm that can reliably detect human faces
with out-of-plane rotation and the first algorithm that can reli-
ably detect passenger cars over a wide range of viewpoints.

1. Intr oduction

The main challenge in object detection is the amount of
variation in visual appearance.  For example, cars vary in
shape, size, coloring, and in small details such as the head-
lights, grill, and tires.  Visual appearance also depends on the
surrounding environment.  Light sources will vary in their
intensity, color, and location with respect to the object.  Nearby
objects may cast shadows on the object or reflect additional
light on the object.  The appearance of the object also depends
on its pose; that is, its position and orientation with respect to
the camera.  For example, a side view of a human face will
look much different than a frontal view.  An object detector
much accommodate all this variation and still distinguish the
object from any other pattern that may occur in the visual
world.

To cope with all this variation, we use a two-part strategy
for object detection.   To cope with variation in pose, we use a
view-based approach with multiple detectors that are each spe-
cialized to a specific orientation of the object as described in
Section 2.  We then use statistical modeling within each of
these detectors to account for the remaining variation.  This
statistical modeling is the focus of this paper.  In Section 3 we
derive the functional form we use in all view-based detectors.
In Section 4 we describe how we collect the statistics for these
detectors from representative sets of training images. In Sec-
tion 5 we discuss our implementation and in Sections 6 and 7
we describe the accuracy of the face and car detectors.

2. View-Based Detectors

  We develop separate detectors that are each specialized to
a specific orientation of the object.  For example, we have one
detector specialized to right profile views of faces and one that

is specialized to frontal views.  We apply these view-based
detectors in parallel and then combine their results.  If there are
multiple detections at the same or adjacent locations, our
method chooses the strongest detection.

We empirically determined the number of orientations to
model for each object.  For faces we use two view-based detec-
tors: frontal and right profile, as shown below.  To detect left-
profile faces, we apply the right profile detector to a mirror-
reversed input images.  For cars we use eight detectors as
shown below.  Again, we detect left side views by running the
seven right-side detectors on mirror reversed images.

 Each of these detector is not only specialized in orienta-
tion, but is trained to find the object only at a specified size
within a rectangular image window.  Therefore, to be able to
detect the object at any position within an image, we re-apply
the detectors for all possible positions of this rectangular win-
dow.  Then to be able to detect the object at any size we itera-
tively resize the input image and re-apply the detectors in the
same fashion to each resized image.

3. Functional Form of Decision Rule

For each view-based detector we use statistical modeling to
account for the remaining forms of variation.  Each of the
detectors uses the same underlying form for the statistical deci-
sion rule.  They differ only in that they use statistics gathered
from different sets of images.

There are two statistical distributions we model for each
view-based detector. We model the statistics of the given
object, P(image | object) and the statistics of the rest of the

Figure 1. Examples of training images for each face orientation

Figure 2. Examples of training images for each car orientation
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visual world, which we call the “non-object” class,P(image |
non-object).  We then compute our detection decision using the
likelihood ratio test:

(1)

If the likelihood ratio (the left side) is greater than the right
side, we decide the object is present.

The likelihood ratio test is equivalent to Bayes decision rule
(MAP decision rule) and will be optimal if our representations
for P(image | object) andP(image | non-object) are accurate.
The rest of this section focuses on the functional forms we
choose for these distributions.

3.1. Representation of Statistics Using Products of
Histograms

The difficulty in modelingP(image | object) andP(image |
non-object) is that we do not know the true statistical charac-
teristics of appearance either for the object or for the rest of the
world.  For example, we do not know if the true distributions
are Gaussian, Poisson, or multimodal.  These properties are
unknown since it is not tractable to analyze the joint statistics
of large numbers of pixels.

Since we do not know the true structure of these distribu-
tions, the safest approach is to choose models that are flexible
and can accommodate a wide range of structure.  One class of
flexible models are non-parametric memory-based models
such as Parzen windows or nearest neighbor.  The disadvantage
of these models is that to compute a probability for a given
input we may have to compare that input to all the training
data.  Such a computation will be extremely time consuming.

An alternative is to use a flexible parametric model that is
capable of representing multimodal distributions, such as a
multilayer perceptron neural network or a mixture model.
However, there are no closed-form solutions for fitting these
models to a set of training examples.  All estimation methods
for these models are susceptible to local minima.

Instead of these approaches, we choose to use histograms.
Histograms are almost as flexible as memory-based methods
but use a more compact representation whereby we retrieve
probability by table look-up.  Estimation of a histogram simply
involves counting how often each attribute value occurs in the
training data. The resulting estimates are statistically optimal.
They are unbiased, consistent, and satisfy the Cramer-Rao
lower bound.

The main drawback of a histogram is that we can only use a
relatively small number of discrete values to describe appear-
ance.  To overcome this limitation, we use multiple histograms
where each histogram,Pk(pattern | object), represents the prob-
ability of appearance over some specifiedvisual attribute,
patternk; that is,patternk is a random variable describing some
chosen visual characteristic such as low frequency content. We
will soon specify how we partition appearance into different

visual attributes.  However, in order to do so, we need to first
understand the issues in combining probabilities from different
attributes.

To combine probabilities from different attributes, we will
take the following product where we approximate each class-
conditional probability function as a product of histograms:

(2)

In forming these representations forP(image | object) and
P(image | non-object) we implicitly assume that the attributes
(patternk) are statistically independent for both the object and
the non-object.  However, it can be shown that we can relax
this assumption since our goal is accurate classification not
accurate probabilistic modeling [2]. For example, let us con-
sider a classification example based on two random variables,
A andB.  Let’s assume thatA is a deterministic function ofB, A
= f (B), and is therefore fully dependent onA, P(A=f(B) | B) =
1.  The optimal classifier becomes:

(3)

If we wrongly assume statistical independence betweenA and
B, then the classifier becomes:

(4)

This case illustrates that we can achieve accurate classification
(by choosingγ = λ2) even though we have violated the statisti-
cal independence assumption.

In the general case, when we do not know the relationship
betweenA andB, performance will depend on how well the
ratio P(A | object) /P(A | non-object) approximatesP(A | B,
object) /P(A | B, non-object).  However, it is probably better to
modelA andB as statistically independent than to only model
one variable.  For example, if we only modelB our classifier
would become:

(5)

In this formulation, we would be implicitly approximatingP(A
| B, object) /P(A | B, non-object), by 1.  Chances are thatP(A |
object) /P(A | non-object) is a better approximation.

In choosing how to decompose visual appearance into dif-
ferent attributes we face the question of what image measure-
ments to model jointly and what to model independently.
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Obviously, if the joint relationship between two variables, such
asA andB seems to distinguish the object from the rest of the
world, we should try to model them jointly.  If we are unsure, it
is still probably better to model them independently than not to
model one at all.

Ideally, we would like to follow a systematic method for
determining which visual qualities distinguish the object from
the rest of the visual world.  Unfortunately, the only known
way of doing this is to try all possibilities and compare their
classification accuracy.  Such an approach is not computation-
ally tractable.  Ultimately, we have to make educated guesses
about what visual qualities distinguish faces and cars from the
rest of the world.  We describe these guesses below.

3.2. Decomposition of Appearance in Space,
Frequency, and Orientation

For both faces and cars, our approach is to jointly model
visual information that is localized in space, frequency, and
orientation.  To do so, we decompose visual appearance along
these dimensions.  Below we explain this decomposition and in
the next section we specify our visual attributes based on this
decomposition.

First, we decompose the appearance of the object into
“parts” whereby each visual attribute describes a spatially
localized region on the object.    By doing so we concentrate
the limited modeling power of each histogram over a smaller
amount of visual information.

We would like these parts to be suited to the size of the fea-
tures on each object.  However, since important cues for faces
and cars occur at many sizes, we need multiple attributes over a
range of scales.  We will define such attributes by making a
joint decomposition in both space and frequency.  Since low
frequencies exist only over large areas and high frequencies
can exist over small areas, we define attributes with large spa-
tial extents to describe low frequencies and attributes with
small spatial extents to describe high frequencies.  The
attributes that cover small spatial extents will be able to do so
at high resolution.   These attributes will capture small distinc-
tive areas such as the eyes, nose, and mouth on a face and the
grill, headlights, and tires on a car.  Attributes defined over
larger areas at lower resolution will be able to capture other
important cues.  On a face, the forehead is brighter than the eye
sockets.  On a car, various surfaces such as the hood, wind-
shield, and fenders may differ in intensity.

We also decompose some attributes in orientation content.
For example, an attribute that is specialized to horizontal fea-
tures can devote greater representational power to horizontal
features than if it also had to describe vertical features.

Finally, by decomposing the object spatially, we do not
want to discard all relationships between the various parts.  We
believe that the spatial relationships of the parts is an important
cue for detection.  For example, on a human face, the eyes
nose, and mouth appear in a fixed geometric configuration. To

model these geometric relationships, we represent the positions
of each attribute sample with respect to a coordinate frame
affixed to the object.  This representation captures each sam-
ple’s relative position with respect to all the others.  With this
representation, each histogram now becomes a joint distribu-
tion of attribute and attribute position,Pk(patternk(x,y), x, y |
object) andPk(patternk(x,y), x, y | non-object),  where attribute
position, x, y, is measured with respect to rectangular image
window we our classifying (see section 2). However, we do not
represent attribute position at the original resolution of the
image.  Instead, we represent position at a coarser resolution to
save on modeling cost and to implicitly accommodate small
variations in the geometric arrangements of parts.

3.3. Representation of Visual Attrib utes by Subsets
of Quantized Wavelet Coefficients

To create visual attributes that are localized in space, fre-
quency, and orientation, we need to be able to easily select
information that is localized along these dimensions.  In partic-
ular, we would like to transform the image into a representation
that is jointly localized in space, frequency, and orientation.  To
do so, we perform a wavelet transform of the image.

The wavelet transform is not the only possible decomposi-
tion in space, frequency, and orientation.  Both the short-term
Fourier transform and pyramid algorithms can create such rep-
resentations.  Wavelets, however, produce no redundancy.
Unlike these other transforms, we can perfectly reconstruct the
image from its transform where the number of transform coef-
ficients is equal to the original number of pixels.

The wavelet transform organizes the image into subbands
that are localized in orientation and frequency.  Within each
subband, each coefficient is spatially localized. We use a wave-
let transform based on 3 level decomposition using a 5/3 linear
phase filter-bank [1] producing 10 subbands as shown below in
Figure 3. Each level in the transform represents a higher octave

of frequencies.  A coefficient in level 1 describes 4 times the
area of a coefficient in level 2, which describes 4 times the area
of a coefficient in level 3.  In terms of orientation, LH denotes
low-pass filtering in the horizontal direction and high pass fil-
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Figure 3.  Wavelet representation of an image



tering in the vertical direction, that is horizontal features.  Sim-
ilarly, HL represents vertical features.

We use this representation as a basis for specifying visual
attributes. Each attribute will be defined to sample a moving
window of transform coefficients.  For example, one attribute
could be defined to represent a 3x3 window of coefficients in
level 3 LH band.  This attribute would capture high frequency
horizontal patterns over a small extent in the original image.
Another pattern set could represent spatially registered 2x2
blocks in the LH and HL bands of the 2nd level. This would
represent an intermediate frequency band over a larger spatial
extent in the image.

Since each attribute must only take on a finite number of
values, we will have to compute a vector quantization of its
sampled wavelet coefficients.  To keep histogram size under
1,000,000 bins, we would like to express each attribute by no
more than 10,000 discrete values sincex,y (position) will
together take on about 100 discrete values. To stay within this
limit, each visual attribute will be defined to sample 8 wavelet
coefficients at a time and will quantize each coefficient to 3
levels.  This quantization scheme gives 38=6,561 discrete val-
ues for each visual attribute.

Overall, we use 17 attributes that sample the wavelet trans-
form in groups of 8 coefficients in one of the following ways
(These definitions are taken from [3]):

1.  Intra-subband - All the coefficients come from the same
subband.  These visual attributes are the most localized in fre-
quency and orientation.  We define 7 of these attributes for the
following subbands: level 1 LL, level 1 LH, level 1 HL, level  2
LH, level 2 HL, level 3 LH, level 3 HL.

2.  Inter-frequency- Coefficients come from the same orien-
tation but multiple frequency bands.  These attributes represent
visual cues that span a range of frequencies such as edges.  We
define 6 such attributes using the following subband pairs:
level 1 LL - level l HL, level 1 LL-level l LH, level 1 LH - level
2 LH, level 1 HL - level 2 HL, level 2 LH - level 3 LH, level 2
HL - level 3 HL.

3. Inter-orientation  - Coefficients come from the same fre-
quency band but multiple orientation bands.  These attributes
can represent cues that have both horizontal and vertical com-
ponents such as corners.  We define 3 such attributes using the
following subband pairs:  level 1 LH - level 1 HL, level 2 LH -
level 2 HL, level 3 LH - level 3 HL.

4. Inter-frequency / inter-orientation - This combination is
designed to represent cues that span a range of frequencies and
orientations.  We define one such attribute combining coeffi-
cients from the following subbands: level 1 LL, level l LH,
level 1 HL, level 2 LH, level 2 HL.

In terms of spatial-frequency decomposition, attributes that
use level 1 coefficients describe large spatial extents over a
small range of low frequencies.  Attributes that use level 2
coefficients describe mid-sized spatial extents over a mid-range
of frequencies, and attributes that use level 3 coefficients
describe small spatial extents over a large range of high fre-

quencies.

3.4. Final Form of Detector

Finally, our approach is to sample each attribute at regular
intervals over the full extent of the object, allowing samples to
partially overlap.  Our philosophy in doing so is to use as much
information as possible in making a detection decision.  For
example, salient features such as the eyes and nose will be very
important for face detection, however, other areas such as the
cheeks and chin will also help, but perhaps to a lesser extent.

Thus, the final form of the detector is given by:

(6)

where “region” is the image window (see Section 2) we are
classifying.

4. Collection of Statistics

So far we have only specified the form of the detector.  We
now need to do collect the actual histograms forPk(pat-
ternk(x,y), x, y | object) andPk(patternk(x,y), x, y | non-object) .

In gathering statistics, one of the immediate problems we
face is choosing training examples for the class “non-object.”
Conceptually, this class represents the visual appearance of
everything in the world excluding the object we want to clas-
sify.  To represent this class accurately, we would need to col-
lect an extremely large set of images.  However, since our goal
is classification and not accurate representation, we do not nec-
essarily need a representative set of “non-object” images.  In
order to achieve accurate classification it is more important to
use non-object samples that are most likely to be mistaken for
the object [4].  (This concept is similar to the way support vec-
tor machines work by selecting samples near the decision
boundary [5].)  To determine such samples we use a method
called bootstrapping.   In bootstrapping, we train a preliminary
detector by estimatingPk(patternk(x,y), x, y | non-object) using
randomly drawn samples from a set of non-object images.   We
then run this preliminary detector over a set of about 2,500
images that do not contain the object and select additional sam-
ples at those locations that gave high response.

We collectPk(patternk(x,y), x, y | object) from images of
the object.  For each face viewpoint we use about 2,000 origi-
nal images and for each car viewpoint we use between 300 and
500 original images.  For each original image we generate
around 400 synthetic variations by altering background scen-
ery and making small changes in aspect ratio, orientation, fre-
quency content, and position.

We can collect statistics for these training examples using
several approaches.  In the first approach, we simply give all
the training examples equal weight and estimate each histo-
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gram separately.  We used this method for estimating the car
detectors.  However, the disadvantage of this approach is that it
does not explicitly minimize classification error on the training
set.  For the face detectors, we minimize classification error
over the training set, by using the AdaBoost[9][10] algorithm.
AdaBoost works in an iterative fashion.  First, we train a detec-
tor by assigning the same weight to all training examples.
Then we iteratively retrain the detector where at each iteration
more weight is given to training examples that were incorrectly
classified by the detector trained in the previous iteration.  It
can be shown that through this process, the classification error
can be decreased[9][10].

5. Implementation of Detectors: Coarse to Fine
Search Strategy

As we mentioned in the introduction, we search the image
exhaustively in position and scale to find objects. A direct
implementation of this search will take a long time to compute.
We use a heuristic coarse-to-fine strategy to speed up this pro-
cess.  We first partially evaluate the likelihood ratio for each
possible object location using low resolution visual attributes,
i.e., the ones that use level 1 coefficients.  We then only con-
tinue evaluation at higher resolution for those object candidates
that are promising, i.e., are above a minimum threshold for the
partial evaluation.  Currently, using this strategy to search a
320x240 image over 4 octaves of candidate size takes about 1
minute for faces and 5 minutes for cars.

We also optimized an earlier frontal face detector we devel-
oped [8] using this same strategy and reduced its execution
time to about 5 seconds for a 320x240 image.

6. Accuracy of Face Detection with Out-of-Plane
Rotation

We have developed the first successful algorithm for detec-
tion of faces with out-of-plane rotation. To test its accuracy, we
collected a test set of 208 images with 441 faces of which 347
are in profile view.  We gathered these images from various
sites on the World Wide Web.  We show the accuracy of the
detector in Table 1 for different sensitivities below, where the
last row is our minimum error performance:

whereγ is a linear scaling ofλ in equation (6).  In figure 4, we

show our results on some of these images atγ = 1.5.
In  face detection experiments, we noticed some differences

in performance between the detector described in this paper
and an improved version of the detector we described in [8].
Both detectors use similar probabilistic structures but differ
mainly in that the detector in [8] uses visual attributes based on
localized eigenvectors rather than wavelet coefficients.  The
wavelet based detector described in this paper performs much
better for profile faces. However, the eigenvector detector per-
forms slightly better on frontal faces.  Below in Table 2 we
compare these detectors with others on the combined test sets
of Sung and Poggio[6] and Rowley, Baluja, and Kanade[7].

* indicates that 5 images of line drawn faces were excluded
leaving 125 images with 483 labeled faces.  However, there are
at least 10 additional human faces that are not labeled.  The
numbers not in parentheses indicate results on just the 483
labeled faces.  To be consistent with [11], we also indicate, in
parentheses, the ratio between the total number of faces found
by computer and 483.

7. Accuracy of Car Detection

We have also developed the first algorithm that can reliably
detect passenger cars over a range of viewpoints.  To test its
accuracy, we collected a test set of 104 images that contain 213
cars which span a wide variety of models, sizes, orientations,
background scenery, lighting conditions, and include some par-
tial occlusion using several cameras and from the internet.
Overall our performance was as follows:Table 1. Face detection with out-of-plane rotation

γ Detection
(all faces)

Detection
(profiles)

False
Detections

0.0 92.7% 92.8% 700

1.5 85.5% 86.4% 91

2.5 75.2% 78.6% 12

Table 2. Frontal face detection

Detection
rate

False
detections

Schneiderman and Kanade*
eigenvector

94.4%
(95.8%)

65

Roth, Yang, Ahuja [11]* (94.8%) 78

Schneiderman and Kanade*
wavelet

90.2%
(91.8%)

110

Rowley, Baluja, Kanade[7] 86.0% 31

Table 3. Car detection

γ Detections
False

Detections

1.05 83% 7

1.0 86% 10

0.9 92% 71



In figure 4, we show our results on some typical images from
this set evaluated atγ = 1.0.
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Figure 4. Face and car detection examples


