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Abstract is specialized to frontal wes. We apply these vie-based

In this paperwe describe a statistical method for 3D objectdetectors in parallel and then combine their results. If there are
detection. W represent the statistics of both object appeamultiple detections at the same or adjacent locations, our
ance and “non-object” appearance using a product of historethod chooses the strongest detection.
grams. Each histogram represents the joint statistics of a subset We empirically determined the number of orientations to
of wavelet coeficients and their position on the object. Ourmodel for each object. oF faces we use Bwwiew-based detec-
approach is to use masuch histograms representing a widetors: frontal and right profile, as skio belav. To detect left-
variety of visual attribtes. Using this method, weveaderel-  profile faces, we apply the right profile detector to a mirror
oped the first algorithm that can reliably detect hunzred reversed input images. oF cars we use eight detectors as
with out-of-plane rotation and the first algorithm that can relishovn belav. Again, we detect left side vies by running the
ably detect passenger cak&pa wide range of wepoints. seven right-side detectors on mirrovegsed images.

1. Intr oduction

The main challenge in object detection is the amount of
variation in visual appearance. orfFexample, cars ary in
shape, size, coloring, and in small details such as the head-
lights, grill, and tires. éual appearance also depends on the Figure 1. Examples of training imagesadr each face orientation
surrounding ewvironment. Light sources will ary in their
intensity color, and location with respect to the object. Nearby
objects may cast shade on the object or reflect additional
light on the object. The appearance of the object also depend$
on its pose; that is, its position and orientation with respect to
the camera. & example, a side vig of a human dce will B
look much diferent than a frontal we An object detector
much accommodate all thismation and still distinguish the
object from ag other pattern that may occur in the visual Figure 2. Examples of training imagesdr each car orientation
world.

To cope with all this ariation, we use a tvpart stratgy
for object detection. d'cope with ariation in pose, we use a
view-based approach with multiple detectors that are each s
cialized to a specific orientation of the object as described i
Section 2. W then use statistical modeling within each of
these detectors to account for the remainiagation. This
statistical modeling is the focus of this papér Section 3 we
derive the functional form we use in all webased detectors.
In Section 4 we describe Wwowe collect the statistics for these 3. Functional Form of Decision Rule
detectors from representai sets of training images. In Sec-
tion 5 we discuss our implementation and in Sections 6 and 7 For each viei-based detector we use statistical modeling to

Each of these detector is not only specialized in orienta-
tion, kut is trained to find the object only at a specified size
within a rectangular image windo Therefore, to be able to
Pietect the object at wrposition within an image, we re-apply
'the detectors for all possible positions of this rectangular win-
dow. Then to be able to detect the object at sine we itera-
tively resize the input image and re-apply the detectors in the
same &shion to each resized image.

we describe the accuraof the fice and car detectors. account for the remaining forms ofnation. Each of the
detectors uses the same underlying form for the statistical deci-
2. View-Based Detectors sion rule. The differ only in that thg use statistics athered

from different sets of images.

There are tw statistical distribtions we model for each
view-based detector'We model the statistics of thevgn
object, P(image | object) and the statistics of the rest of the

We develop separate detectors that are each specialized to
a specific orientation of the objectorFexample, we hee one
detector specialized to right profile wig of faces and one that



visual world, which we call the “non-object” clasB(image | visual attritutes. Havever, in order to do so, we need to first
non-object). W then compute our detection decision using theinderstand the issues in combining probabilities froferdiht

likelihood ratio test: attributes.
) ) To combine probabilities from dérent attrilutes, we will
P(image|objec) _, h= P(non-objecj take the follaving product where we approximate each class-
P(image|non-objec} P(objecy O (1)

conditional probability function as a product of histograms:

If the likelihood ratio (the left side) is greater than the right
side, we decide the object is present.

The likelihood ratio test is equalent to Bayes decision rule )
(MAP decision rule) and will be optimal if our representations P(image|non-objec} = [7] P(patter n non-objecy
for P(image | object) andP(image | non-object) are accurate. k

The rest of this section focuses on the functional forms we !N forming these representations fe(image | object) and
choose for these distrilions. P(image | non-object) we implicitly assume that the atités

(pattern,) are statistically independent for both the object and
3.1. Repesentation of Statistics Using Riducts of the non-object. Heever, it can be shen that we can relax
Histograms this assumption since our goal is accurate classification not

accurate probabilistic modeling [2]oFexample, let us con-

The dificulty in modelingP(image | object) andP(image|  sider a classificationxample based on twrandom wariables,
non-object) is that we do not kmathe true statistical charac- AandB. Let's assume tha is a deterministic function d, A
teristics of appearance either for the object or for the rest of tief (B), and is therefore fully dependent AnPA=f(B) | B) =
world. For example, we do not kno if the true distrintions 1. The optimal classifier becomes:
are Gaussian, Poisson, or multimodal. These properties are
unknawn since it is not tractable to analyze the joint statistics __P(A Blobjec) ~_  P(A|B, objec)P(B|objec)
of large numbers of pids. P(A, B|non-objecy  P(A|B, non-objec}P(B|non-objec}

Since we do not ke the true structure of these distrib )
tions, the safest approach is to choose models that zitddle = M >A ®)
and can accommodate a wide range of structure. One class of F(BInon-objec)
flexible models are non-parametric memory-based modelg e wrongly assume statistical independence betweand
such as Brzen windws or nearest neighhoiThe disadantage B then the classifier becomes:
of these models is that to compute a probability forvergi
input we may hee to compare that input to all the training P(A, B|objec) P(A|objec)P(B|objec
data. Such a computation will betieemely time consuming. P(A, B|non-objec} ~ P(A|non-objec}P(B|non-objec) 4)

An alternatve is to use a fléble parametric model that is
capable of representing multimodal disttibns, such as a
multilayer perceptron neural netvk or a mixture model.
However, there are no closed-form solutions for fitting theserhis case illustrates that we can aghiaccurate classification
models to a set of training@mples. All estimation methods (by choosingy = A2) even though we he violated the statisti-
for these models are susceptible to local minima. cal independence assumption.

Instead of these approaches, we choose to use histograms. |n the general case, when we do notwribe relationship
Histograms are almost asxiele as memory-based methods petweenA andB, performance will depend on Wwowell the
but use a more compact representation whereby wewveetrieratio P(A | object) /P(A | non-object) approximate®(A | B,
probability by table look-up. Estimation of a histogram simplygbject) /P(A | B, non-object). Havever, it is probably better to
involves counting ho often each attrilite \alue occurs in the  modelA andB as statistically independent than to only model

training data. The resulting estimates are statistically optimagne \ariable. Br example, if we only modeB our classifier
They are unbiased, consistent, and satisfy the Cr&aer \would become:

lower bound.

The main dravback of a histogram is that we can only use a
relatively small number of discretealies to describe appear-
ance. © overcome this limitation, we use multiple histograms|n this formulation, we wuld be implicitly approximating®(A
where each histograrRy(pattern | object), represents the prob- | B, object) /P(A | B, non-object), by 1. Chances are thé |
ability of appearancever some specifiedisual attribute,  object) /P(A | non-object) is a better approximation.
patterny; that is,patterny is a random ariable describing some |n choosing hw to decompose visual appearance into dif-
chosen visual characteristic such as foequeny content. V8 ferent attrilutes we &ce the question of what image measure-
will soon specify hw we partition appearance into féifent  ments to model jointly and what to model independently

P(image|objec) = |_| P, (patter nk|objec1)
k

_ ,_P(BJobjec) D2>
LP(B|non-objecyU

P(A, B|objec) P(B|objec
P(A, B|non-objec) =1 )P(B|non-objec) (5)




Obviously, if the joint relationship between twariables, such model these geometric relationships, we represent the positions
asA andB seems to distinguish the object from the rest of th@f each attribte sample with respect to a coordinate frame
world, we should try to model them jointlyf we are unsure, it affixed to the object. This representation captures each sam-
is still probably better to model them independently than not tple’s relatve position with respect to all the others.itWthis
model one at all. representation, each histogramanbecomes a joint distnib
Ideally, we would like to follov a systematic method for tion of attritute and attribte position,P,(pattern,(x,y), X, y |
determining which visual qualities distinguish the object fromobject) andP,(pattern,(x,y), X, y | non-object), where attrike
the rest of the visual evld. Unfortunately the only knavn position, x, y, is measured with respect to rectangular image
way of doing this is to try all possibilities and compare theirwindow we our classifying (see section 2).wer, we do not
classification accurgc Such an approach is not computation-represent attrilte position at the original resolution of the
ally tractable. Ultimatelywe hae to male educated guesses image. Instead, we represent position at a coarser resolution to
about what visual qualities distinguisiicés and cars from the sarze on modeling cost and to implicitly accommodate small

rest of the wrld. We describe these guesses belo variations in the geometric arrangements of parts.
3.2. Decomposition of Apearance in Space, 3.3. Repesentation of \isual Attrib utes by Subsets
Frequency and Orientation of Quantized Wavelet Coefficients

For both fices and cars, our approach is to jointly model To create visual attrilies that are localized in space, fre-
visual information that is localized in space, freqyerand queng, and orientation, we need to be able to easily select
orientation. © do so, we decompose visual appearance alorigformation that is localized along these dimensions. In partic-
these dimensions. Belowve explain this decomposition and in ular, we would like to transform the image into a representation
the net section we specify our visual attuiles based on this that is jointly localized in space, frequgnand orientation. @
decomposition. do so, we perform aavelet transform of the image.

First, we decompose the appearance of the object into The wavelet transform is not the only possible decomposi-
“parts” whereby each visual attute describes a spatially tion in space, frequegcand orientation. Both the short-term
localized rgion on the object. By doing so we concentratd=ourier transform andypamid algorithms can create such rep-
the limited modeling pwoer of each histogramver a smaller resentations. WWelets, havever, produce no redundayc
amount of visual information. Unlike these other transforms, we can perfectly reconstruct the

We would like these parts to be suited to the size of the fedmage from its transform where the number of transform coef-
tures on each object. Kever, since important cues foades ficients is equal to the original number of glix
and cars occur at masizes, we need multiple attites wer a The wevelet transform aanizes the image into subbands
range of scales. ®will define such attriltes by making a that are localized in orientation and frequendMthin each
joint decomposition in both space and freqyen&ince lev ~ subband, each cdifient is spatially localized. ¥Wuse a ave-
frequencies x@st only over lage areas and high frequencies let transform based on vl decomposition using a 5/3 linear
can «ist over small areas, we define attribs with lage spa- phase filtetbank [1] producing 10 subbands aswhdelav in
tial extents to describe Vo frequencies and attiites with  Figure 3. Each kel in the transform represents a higher eeta
small spatial etents to describe high frequencies. The

attributes that ceer small spatial>@ents will be able to do so :‘Il :_"i Level 2

at high resolution. These atuiles will capture small distinc- L1] L1 HL Level 3

tive areas such as thges, nose, and mouth onacé and the L L HH HL

grill, headlights, and tires on a caittributes defined wer Level 2 | Level 2

larger areas at Wer resolution will be able to capture other LH HH

important cues. On ade, the forehead is brighter than the e

soclets. On a camarious surfices such as the hood, wind-

shield, and fenders may fiif in intensity Level 3 Level 3
We also decompose some atités in orientation content. LH HH

For example, an attribte that is specialized to horizontal fea-

tures can deote greater representationalwsr to horizontal

features than if it also had to descrileetical features.
Finally, by decomposing the object spatiallye do not
want to discard all relationships between thgous parts. W  of frequencies. A cofi€ient in level 1 describes 4 times the
believe that the spatial relationships of the parts is an importa@trea of a coéitient in level 2, which describes 4 times the area
cue for detection. @&t example, on a humara€e, the yes  of a coeficient in level 3. In terms of orientation, LH denotes
nose, and mouth appear in aefixgeometric configurationoT low-pass filtering in the horizontal direction and high pass fil-

Figure 3. Wavelet representation of an image



tering in the wertical direction, that is horizontal features. Sim-

ilarly, HL representsartical features.

quencies.

We use this representation as a basis for specifying visudl4. Final Form of Detector

attributes. Each attrite will be defined to sample a wing
window of transform codicients. r example, one attrilte
could be defined to represent a 3x3 winduf coeficients in
level 3 LH band. This attrilde would capture high frequenc
horizontal patternswer a small gtent in the original image.
Another pattern set could represent spatiallyistered 2x2
blocks in the LH and HL bands of the 2ndde This would
represent an intermediate frequgii@and @er a lager spatial
extent in the image.

Since each attride must only taé& on a finite number of
values, we will hae to compute aector quantization of its
sampled wavelet coeficients. D keep histogram size under
1,000,000 bins, we auld like to express each attritbe by no
more than 10,000 discretealues sincex,y (position) will
together tak on about 100 discretalues. © stay within this
limit, each visual attribte will be defined to sample Savelet
coeficients at a time and will quantize each ¢cednt to 3
levels. This quantization schemevgs $=6,561 discreteal-
ues for each visual attrke.

Overall, we use 17 attriltes that sample theauelet trans-
form in groups of 8 coétients in one of the follwing ways
(These definitions are tak from [3]):

1. Intra-subband - All the cdefients come from the same
subband. These visual attrites are the most localized in fre-
queng and orientation. &/ define 7 of these atttites for the
following subbands: {el 1 LL, level 1 LH, level 1 HL, level 2
LH, level 2 HL, level 3 LH, level 3 HL.

2. Interfrequeng- Coeficients come from the same orien-
tation ut multiple frequeng bands. These attrites represent
visual cues that span a range of frequencies such as edges.
define 6 such attrilies using the follwing subband pairs:
level 1 LL - level | HL, level 1 LL-level | LH, level 1 LH - level
2 LH, level 1 HL - level 2 HL, level 2 LH - level 3 LH, level 2
HL - level 3 HL.

3. Interorientation - Codicients come from the same fre-
queny band lnt multiple orientation bands. These atités
can represent cues thatvhaboth horizontal andevtical com-
ponents such as corners.e\define 3 such attuibes using the
following subband pairs: Vel 1 LH - level 1 HL, level 2 LH -
level 2 HL, level 3 LH - level 3 HL.

4. Interfrequeny / interorientation - This combination is

Finally, our approach is to sample each atitgbat rgular
intenvals over the full etent of the object, allging samples to
partially overlap. Our philosophin doing so is to use as much
information as possible in making a detection decisionr F
example, salient features such as theseand nose will beevy
important for ice detection, lweever, other areas such as the
cheeks and chin will also helpjtperhaps to a lessertent.

Thus, the final form of the detector ivgn by:

17

ﬂ |_| P (patter n,(x, y), X, y|objec9
x, y O regiong = 1
17 >A (6)
ﬂ |_| P (pattern,(x, y), X, y|non-objec)
X,y Uregiong = 1

where “rgion” is the image winde (see Section 2) we are
classifying.

4. Collection of Statistics

So far we hae only specified the form of the detectale
nonv need to do collect the actual histograms Ryfpat-
tern(x,y), X, y | object) andP,(pattern,(x,y), X, y | hon-object) .

In gathering statistics, one of the immediate problems we
face is choosing trainingkemples for the class “non-objéct.
Conceptually this class represents the visual appearance of
everything in the wrld excluding the object we ant to clas-
sify. To represent this class accurateiye would need to col-
lect an etremely lage set of images. kaver, since our goal
is classification and not accurate representation, we do not nec-
assarily need a representatiset of “non-object” images. In
order to achiee accurate classification it is more important to
use non-object samples that are mostljiko be mista&n for
the object [4]. (This concept is similar to theysupport ec-
tor machines wrk by selecting samples near the decision
boundary [5].) © determine such samples we use a method
called bootstrapping. In bootstrapping, we train a preliminary
detector by estimatinB,(pattern,(x,y), X, y | non-object) using
randomly drawvn samples from a set of non-object imagese W
then run this preliminary detectover a set of about 2,500
images that do not contain the object and select additional sam-
ples at those locations thavg high response.

designed to represent cues that span a range of frequencies and/\Ve collectP,(pattern,(x,y), X, y | object) from images of

orientations. W define one such atttite combining codf
cients from the follwing subbands: {el 1 LL, level | LH,
level 1 HL, level 2 LH, level 2 HL.

In terms of spatial-frequepdecomposition, attriltes that
use leel 1 coeficients describe lge spatial ®tents @wer a
small range of v frequencies. Attribtes that use el 2
coeficients describe mid-sized spatiatents @er a mid-range
of frequencies, and attikes that use el 3 coeficients
describe small spatialkients wer a lage range of high fre-

the object. Br each &ce vievpoint we use about 2,000 origi-
nal images and for each carwjgint we use between 300 and
500 original images. df each original image we generate
around 400 syntheticaviations by altering background scen-
ery and making small changes in aspect ratio, orientation, fre-
queng content, and position.

We can collect statistics for these trainingumples using
several approaches. In the first approach, we simplg gll
the training gamples equal weight and estimate each histo-



gram separately We used this method for estimating the carshow our results on some of these imageg-=atl.5.

detectors. Haever, the disadantage of this approach is that it In face detectionx@eriments, we noticed somefdifences
does not eplicitly minimize classification error on the training in performance between the detector described in this paper
set. for the fice detectors, we minimize classification errorand an impreed \ersion of the detector we described in [8].
over the training set, by using the AdaBoost[9][10] algorithm.Both detectors use similar probabilistic structures differ
AdaBoost varks in an iteratie fashion. First, we train a detec- mainly in that the detector in [8] uses visual atttéds based on

tor by assigning the same weight to all trainingireples. localized eigewvectors rather than avelet coeficients. The
Then we iteratiely retrain the detector where at each iterationvavelet based detector described in this paper performs much
more weight is gien to training gamples that were incorrectly better for profile &ces. Hwever, the eigemector detector per-
classified by the detector trained in thevimas iteration. It forms slightly better on frontalates. Belw in Table 2 we

can be shon that through this process, the classification errocompare these detectors with others on the combined test sets
can be decreased[9][10]. of Sung and Poggio[6] and Rtey, Baluja, and Kanade[7].

5. Implementation of Detectors: Coarse to Fine Table 2. Frontaldce detection

Search Strategy Detection False
As we mentioned in the introduction, we search the image rate detections

exhaustvely in position and scale to find objects. A direct

implementation of this search will tka long time to compute. | Schneiderman and Kanade’  94.4% 65

We use a heuristic coarse-to-fine siygitéo speed up this pro- eigervector (95.8%)

cess. W first partially galuate the liklihood ratio for each : * o

possible object location usingworesolution visual attriltes, Roth, Yang, Ahuja [11] (94.8%) 8

i.e., the ones that usevld 1 coeficients. W& then only con- Schneiderman and Kanade¥ 90.2% 110

tinue evaluation at higher resolution for those object candidates wavelet (91.8%)

that are promising, i.e., are aleoa minimum threshold for the

partial ealuation. Currentlyusing this stratgy to search a Rowley, Baluja, Kanade[7] 86.0% 31

320x240 image \er 4 octaes of candidate size & about 1
minute for Bices and 5 minutes for cars.

We also optimized an earlier frontalce detector we dgel-
oped [8] using this same strgjeand reduced itsxecution
time to about 5 seconds for a 320x240 image.

* indicates that 5 images of line eva faces were eluded
leaving 125 images with 483 labeledckes. Hwever, there are

at least 10 additional humaades that are not labeled. The
numbers not in parentheses indicate results on just the 483
labeled &ces. © be consistent with [11], we also indicate, in
parentheses, the ratio between the total numbexcesffound

by computer and 483.

6. Accuracy of Face Detection with Out-of-Plane
Rotation

We have developed the first successful algorithm for detec-7_ Accuracy of Car Detection
tion of faces with out-of-plane rotationo Test its accurggwe
collected a test set of 208 images with 4ddek of which 347
are in profile vie. We cathered these images fromarious
sites on the \WOfd Wide Weh We shaev the accurag of the
detector in @ble 1 for diferent sensitiities belav, where the
last raw is our minimum error performance:

We hare also deeloped the first algorithm that can reliably
detect passenger cargeo a range of vigpoints. D test its
accurag, we collected a test set of 104 images that contain 213
cars which span a wideakiety of models, sizes, orientations,
background scenerlighting conditions, and include some par-
tial occlusion using seeral cameras and from the internet.

Detection Detection False Table 3. Car detection
¥ (all faces) (profiles) Detections
Detection False
0.0 92.7% 92.8% 700 Y 'ONS 1 petections
1.5 85.5% 86.4% 91 1.05 83% 7
2.5 75.2% 78.6% 12 1.0 86% 10
wherey is a linear scaling of in equation (6). In figure 4, we 0.9 92% 1




In figure 4, we sho our results on some typical images from _-
this set galuated ay = 1.0.
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Figure 4. Face and car detection examples



