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1 Introduction

In this set of notes, we illustrate wavelet-based texture segmentation on images from the Brodatz Textures
Database [1]. We perform two sets of experiments on groups of four texture images each, as shown in
Figures 1 and 2, respectively. Each individual texture image has dimensions 320 × 320. For each set of
textures, we use the top halves of Figures 1 and 2 for training wavelet-based models of texture appearances,
while all testing is conducted on the bottom halves.

Figure 1: Texture set #1.

Figure 2: Texture set #2.

2 Approach

In this section, we describe our approach to texture segmentation as well as our training of statistical
texture-appearance models.

2.1 Training data

In our approach to classifying and segmenting texture images, we choose to analyze 16 × 16 pixel neighbor-
hoods W . Therefore, for each texture class ω ∈ {1, . . . , C}, we extract 16×16 subimages Wω

j , j ∈ {1, . . . , N},
where the origin of each is offset from its nearest neighbor by 4 pixels in both the x and y directions. For
example, a 64 × 64 image generates 13 × 13 = 169 subimages, as illustrated in Figure 3 for a small sam-
ple texture image. Note that for training images sized 160 × 320 (top half of individual texture images in
Figures 1 and 2), we extract N = 77 × 77 = 2849 individual windows Wω

j for each texture ω.
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Figure 3: All 16 × 16 subimages W (offset by 4 pixels) for a 64 × 64 sample image.

Now, each subimage Wω
j gives rise to a set of six feature vectors xω

ij , i ∈ {1, . . . , 6}. As depicted in Figure 4,
we first perform a 2-level, 2D Discrete Wavelet Transform (DWT) on Wω

j . Next, we take the magnitude
of the resulting wavelet coefficients. Then, we define xω

ij as the ith band of the magnitude DWT, where
Figure 4 specifies which i corresponds to which band (i.e. LH1, HL1, HH1, LH2, HL2 and HH2). Note
that we throw out intensity information in the original image by not including the LL2 band, since average
intensities are not, in general, discriminating for texture images of the type shown in Figures 1 and 2.
Finally, we observe that feature vectors xω

1j , xω
2j and xω

3j are of length 8 × 8 = 64, while feature vectors xω
4j ,

xω
5j and xω

6j are of length 4 × 4 = 16.

2.2 Statistical texture models

Given the feature vectors xω
ij , j ∈ {1, . . . , N}, i ∈ {1, . . . , 6}, ω ∈ {1, . . . , C}, we now want to built histogram

probability models for each band i and texture class ω. This requires that we first construct common quan-
tizations of feature spaces i across all texture classes ω. We will derive these feature-specific quantizations
using vector quantization; see [2] for specifics on vector quantization.

Let Xω
i = {xω

ij} denote all training feature vectors for band i and texture class ω, and let Xi = {Xω
i } denote

all training feature vectors for band i across all texture classes. Then,

ZL
i = V Q(Xi, L) = {µik}, k ∈ {1, . . . , L} (1)

denotes the L-level VQ codebook of prototype vectors {µik} trained on Xi, where L is user-defined.

Given the six VQ codebooks ZL
i , i ∈ {1, . . . , 6}, we can now assign an integer label `ω

ij to every training
feature vector xω

ij :
`ω
ij = arg min

k
d(xω

ij , µik) (2)

where d(a, b) denotes the Euclidean distance between vectors a and b. Furthermore, let nω
ik denote the

number of vectors in Xω
i with label `ω

ij = k, and let nω
i denote the total number of vectors in Xω

i . Then, we
assign the probability of prototype vector µik for texture class ω as:

Pω
i (k) =

nω
ik

nω
i

. (3)

The probabilities Hω
i = {Pω

i (k)}, k ∈ {1, . . . , L}, define the histogram probability model for feature space
(i.e. band) i and texture class ω over quantization ZL

i .
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Figure 4: Extraction of feature vectors xω
ij for subimage Wω

j .

2.3 Classification

Given the VQ codebooks ZL
i and histogram models Hω

i , we are now in position to classify an unknown
16 × 16 subimage W t. Let xt

i, i ∈ {1, . . . , 6} denote the six feature vectors corresponding to subimage W t,
as in Figure 4), and let `t

i denote the integer label for xt
i and VQ codebook ZL

i , as in equation (2) above.
Then, we classify subimage W t as texture class ω∗, where,

ω∗ = arg max
ω

6∏

i=1

Pω
i (`t

i). (4)

3 Experiments

In this section, we summarize texture segmentation results for the texture image sets in Figures 1 and 2.
Much more detailed results can be found at [3].

3.1 Texture set #1

This set of experiments relates to the C = 4 texture images shown in Figure 1; numbering of the textures
(from 1 to 4) goes from left to right. The top halves of the texture images were used for training the VQ
codebooks ZL

i and histogram models Hω
i ; the bottom halves of the texture images were used for testing

segmentation performance for the resulting models. Values of L = {2, 4, 8, 16, 32, 64} were tried; roughly
equivalent segmentation performance was achieved for L = {16, 32, 64}. Therefore, here, we show results
only for L = 16; additional results are available at [3].

Figure 5 plots the histograms Hω
i , along with the VQ codebooks Z16

i (below each histogram). Figure 6
illustrates overall segmentation results over test textures with the classification rule as in equation (4).
Averaged correct segmentation is approximately 92%; most of the error occurs for texture class ω = 1 for a
region that is atypical of the texture image as a whole. Finally, Figure 7 illustrates segmentation results for
individual bands i. Note that segmentation performance in Figure 6, when combining probabilities from all
bands, is far superior to segmentation results based on individual bands i only.
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Figure 5: Set #1: VQ codebooks Z16

i and histogram models Hω
i .

Figure 6: Set #1: Segmentation of test textures. Correct classification is approximately 92%.
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Figure 7: Set #1: Segmentation of test textures based on individual bands i; none of the individual-band
segmentations is nearly as good across all texture classes as the results for all bands combined in Figure 6.
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3.2 Texture set #2

This set of experiments relates to the C = 4 texture images shown in Figure 2; numbering of the textures
(from 1 to 4) goes from left to right. The top halves of the texture images were used for training the VQ
codebooks ZL

i and histogram models Hω
i ; the bottom halves of the texture images were used for testing

segmentation performance for the resulting models. Values of L = {2, 4, 8, 16, 32, 64} were tried; roughly
equivalent segmentation performance was achieved for L = {16, 32, 64}. Therefore, here, we show results
only for L = 16; additional results are available at [3].

Figure 8 plots the histograms Hω
i , along with the VQ codebooks Z16

i (below each histogram). Figure 9 illus-
trates overall segmentation results over test textures with the classification rule as in equation (4). Averaged
correct segmentation is approximately 90%; most of the error occurs because of difficulty distinguishing the
very similar textures ω = 2 and ω = 3 (two different wood grains). Finally, Figure 10 illustrates segmenta-
tion results for individual bands i. Note again that segmentation performance in Figure 9, when combining
probabilities from all bands, is far superior to segmentation results based on individual bands i only.
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Figure 8: Set #2: VQ codebooks Z16

i and histogram models Hω
i .

Figure 9: Set #2: Segmentation of test textures. Correct classification is approximately 92%.
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Figure 10: Set #2: Segmentation of test textures based on individual bands i; none of the individual-band
segmentations is nearly as good across all texture classes as the results for all bands combined in Figure 9.
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