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Abstract— Recently, we have implemented a computer-vision
based horizon-tracking algorithm for flight stability and au-
tonomy in Micro Air Vehicles (MAVs) [1]. Occasionally, this
algorithm fails in scenarios where the underlying Gaussian
assumption for the sky and ground appearances is not appro-
priate. Therefore, in this paper, we present a general statistical
image modeling framework which we use to build prior models
of the sky and ground. Once trained, these models can be
incorporated into our existing horizon-tracking algorithm. Since
the appearances of the sky and ground vary enormously, no
single feature is sufficient for accurate modeling; as such, we rely
both on color and texture as critical features in our modeling
framework. Specifically, we choose hue and intensity for our
color representation, and the complex wavelet transform (CWT)
for our texture representation. We then use Hidden Markov Tree
(HMT) models, which are particularly well suited for the CWT’s
inherent tree structure, as our underlying statistical models over
our feature space. With this approach, we have achieved reliable
and robust image segmentation of flight images from on-board
our MAVs as well as on more difficult-to-classify sky/ground
images.

I. INTRODUCTION

In this paper, we seek to build statistical appearance models
that will allow us to segment sky from ground in images and
flight video. This goal was inspired by our previous work in
horizon tracking for Micro Air Vehicles (MAVs) [1]. In that
work, we developed a real-time, vision-based horizon detec-
tion and tracking algorithm for MAVs equipped with on-board
video cameras. With this system, we were able to achieve
self-stabilized and autonomous flights of MAVs, without any
additional inertial or rate sensors. We resorted to vision-based
control, since such inertial and rate sensors typically do not
yet have the requisite accuracy at the miniature scale required
for MAVs, where weight of sensors and other components is
of paramount importance.

Overall, the horizon tracking algorithm works well, espe-
cially when the sky and ground distributions are relatively
coherent. Occasionally, however, horizon detection fails in
scenarios where the underlying Gaussian assumption for the
sky and ground appearances is not appropriate. Moreover,
the horizon detection algorithm is bootstrapped by assuming
that initially the sky occupies the upper part of the image.
For complex mission scenarios, this may be an incorrect
assumption with potentially fatal consequences to the flight
vehicle. For example, we are currently working on deploying
MAVs on munitions for post-impact bomb damage assess-

ment. In this case, the MAV would separate from the munition
prior to impact, and an upright attitude with respect to the
ground cannot be guaranteed. Correct identification of sky and
ground, therefore, becomes imperative.

While modeling the appearance of sky and ground regions
in images may seem intuitively easy, it is, in fact, a very
challenging task. Depending on lighting, weather, landscape,
etc., the appearance of the sky and ground can vary enor-
mously. Given the complex variations in our two image classes
(i.e. sky and ground), careful consideration must be given to
selecting sufficiently discriminating features and a sufficiently
expressive modeling framework. Having experimented with
color and texture features separately, we conclude that only the
feature set that includes both color and texture clues enables
accurate statistical modeling for our application [2]. Previous
experiments also suggest that it is important to represent both
local as well as regional interdependencies in the feature
space. As such, we resort to wavelet-based multi-resolution
analysis in the form of the Complex Wavelet Transform
(CWT).

Given our feature selection, we then choose the Hidden
Markov Tree (HMT) model [3] as our statistical model, since
it is particularly well suited to the CWT’s inherent tree
structure. This choice of model imposes Markov dependencies
on the states of both color values and wavelet coefficients at
adjacent scales of the pyramidal multi-resolution structure. We
train the HMTs with the EM algorithm [4] to obtain a small set
of parameters that fully characterize the likelihoods of the two
image classes at different scales. Finally, we fuse the posterior
likelihoods at each scale, analogous to Choi’s [5] interscale
fusion approach, and perform Bayesian segmentation.

Our approach is distinguished from others, which use
wavelets exclusively, by the inclusion of color in the HMT
model structure. Incorporating color introduces a number of
differences between our models and those in the literature.
Moreover, the design of our statistical models was guided by
real-time requirements of our MAV flight system, leading to
certain design choices that may be sub-optimal if real-time
processing constraints had not been an issue. Although it may
appear that our vision algorithm is computationally complex,
we have come very close to meeting real-time requirements
for our MAVs. Reading, subsampling and segmentation of a
������� image takes only 0.12s on an Athlon 1.8GHz PC.

Below, we give an overview of this paper. In Section II,
we explain our choice of feature space, reviewing the most



important aspects of the HSI color space and properties of the
CWT. Next, in Section III, we describe the HMT model and
Bayesian multiscale segmentation. Then, in Section IV, we
present several examples of sky/ground segmentation. Finally,
we conclude with a discussion of our experimental results.

II. FEATURE SPACE

For our statistical models, we seek to identify features
that lead to improved segmentation performance without un-
necessarily increasing computational complexity. As we have
already mentioned, color or texture clues by themselves yield
poor segmentation results [2]; therefore, below we consider a
feature space that spans both color and texture domains.

A. Color

The color information in a video signal is usually encoded
in the RGB color space. Unfortunately, the R, G and B color
channels are highly correlated; therefore, we choose the HSI
space as a more appropriate color representation for statistical
modeling [6]. In order to simplify our feature space, we
examine the Mahalanobis distances for the hue (H), saturation
(S) and intensity (I) values in sky and ground training images.
Denoting� as the sample mean and�� as the sample variance,
we compute:
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and observe that for various training data sets��� and��� are
consistently greater than��� [2]. Thus, to reduce computational
complexity, we choose only the features H and I for our
statistical model.

Next, we consider the representation of frequency, orienta-
tion and location of energy content in an image; in short, we
want to define texture-based features. As such, we employ the
wavelet transform, due to its inherent representation of texture
at different scales and locations.

B. Complex Wavelet Transform

The 2-D Complex Wavelet Transform (CWT) essentially
filters rows and columns of an image with a bank of complex
bandpass filters, similar to the conventional Discrete Wavelet
Transform (DWT) [7]. Since, each coefficient contains a real
and imaginary part, a redundancy of 2:1 is introduced for one-
dimensional signals. For images, the redundancy increases to
4:1, since two adjacent quadrants of the spectrum are required
to fully represent a real 2-D signal. This is achieved by

Fig. 1. The CWT is strongly oriented at angles���Æ����Æ����Æ.
The original image (left) and the magnitude of the CWT coefficients:
��Æ� ��Æ� ��Æ (center) and���Æ� ���Æ� ���Æ (right).

additional filtering with complex conjugates of either row or
column filters [8]–[10].

Despite its higher computational cost, we prefer the CWT
over the DWT because of the CWT’s following attractive
properties. Kingsbury [8] has shown that the Dual-Tree CWT
possesses near shift invariance, unlike the DWT, where small
shifts in the input signal induces major changes in coefficient
values. Also, the CWT’s directional selectivity is greater,
producing six bandpass subimages of complex coefficients at
each level. The coefficients are strongly oriented at angles
�	
Æ���
Æ���
Æ, as illustrated in Figure 1.

While it is known that the phase of CWT coefficients
is less susceptible to noise corruption than the coefficient
magnitudes [9], experimental results have shown that phase
is not a good feature choice for sky and ground modeling
[2]. Computing the phase of the CWT for orientation angles
�	
Æ���
Æ���
Æ, yields virtually indiscernible subimages
for sky and ground. Therefore, we consider only the mag-
nitude of CWT coefficients in our representation of texture.

The magnitudes of CWT coefficients share the following
properties of the DWT [3], [4], [7]:

1) Multi-resolution: CWT represents an image at different
scales of resolution in space.

2) Clustering: if the magnitude of a wavelet coefficient
is large/small, then the magnitudes of the adjacent
coefficients are very likely to also be large/small.

3) Persistence: large/small values of wavelet coefficients
tend to propagate through scales.

These properties naturally give rise to the HMT statistical
model, which helps us compute the distribution of pixels
belonging to different image classes (as described in the next
section).

To see which sets of orientations tend to be the most
discriminating between sky and ground, we once again experi-
ment with the Mahalanobis distances between sky and ground
coefficient magnitudes belonging to subimages at different
orientation. Computing����Æ , �����Æ , ����Æ , etc., similarly to
the expressions in (1), we observe that for the available sky
and ground training images����Æ and �����Æ are consistently
the least significant. Therefore, our complete feature space is
defined by the H and I color features and the subimages with
orientation�	
Æ and��
Æ. To benefit from the multiscale



Fig. 2. The arrangement of the features: the original image (left), magnitudes of the��Æ and ��Æ CWT and H values (center), magnitudes of the���Æ

and���Æ CWT and I values (right).

presentation of the CWT, we replace the missing��
Æ

subimages with H and I images instead, as shown in Figure 2.
The H and I values at coarser scales are computed as the mean
of the corresponding four values at the next higher-resolution
scale. Hence, the H and I features also exhibit theclustering
andpersistence properties to some extent.

Next we describe the HMT model as an appropriate statis-
tical framework for modeling our chosen feature set.

III. HIDDEN MARKOV TREE MODEL

The Hidden Markov Tree (HMT) structure can model both
the clustering and persistence properties of the CWT coeffi-
cient magnitudes. It consists of a tree structure� that assigns
a node to each coefficient1 and connects mutually dependent
nodes. Thus, every parent node is vertically connected with
its four2 children at the finer scale, as depicted in Figure 3.
For instance, it is obvious from the figure that

���Æ � W�
��Æ � W�

��Æ � � � � � W����
��Æ (2)

Also, note from the figure that we assume that different
features are mutually independent. In other words, connecting
coefficients that belong only to the same feature, we obtain
six mutually independent probability trees:���Æ , ���Æ , ����Æ ,
��	�Æ , �� , and�� .

It is worth noting that we tried to implement the Mixture
Memory Markov Model, as proposed in [10], to account
for the dependencies between features (i.e. probability trees).
However, the slightly improved performance in image seg-
mentation did not justify the substantial increase in processing
time [2]. Also, we experimented with the HMT-2 model,
developed in [11], where a coefficient depends on its two
twin parents. Since the context-based fusion method used for
Bayesian classification incorporates nine parents (not only

1Here, coefficient refers to the magnitude of CWT coefficients and/or the
H and I color values.

2Throughout the paper the CWT is assumed to be dyadic.
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Fig. 3. The three-level CWT with H values: four adjacent coefficients at
one scale have a unique parent belonging to the upper coarser scale. States
S�� are depicted as white balls and coefficient valuesw�� as black balls.

two), segmentation performance did not improve with the
HMT-2. Finally, we note that while we do not consider
horizontal dependencies among nodes at the same scale,
the clustering property is still well modeled, since adjacent
coefficients at one scale have a unique parent.

In order to discuss HMT properties, we first need to
introduce the following notation. A coefficient of a probability
tree �� at a scale� is denoted withw�

����
. A node i has

one parent node���� and four children nodes����, such that
������� � ����� 	 and������� � ���� � 	.

As is customary for HMTs [4], [12], we assign to each
observable random variable (RV)w�

����
a hidden RV, state

S����� , which determines the marginal distribution of the ob-
servable coefficient value. The HMT imposes thatw�

����
is

conditionally independent of all other RVs given its associated
stateS����� . Furthermore,w�

����
is conditionally independent of

the entire tree, given its parent stateS�
�
�������

. Note that the
Markov structure is related to state RVs between scales and
not to coefficient values.

If we assume an M-state Gaussian mixture density for the
marginal distribution ofw�

����
, the tree�� is fully characterized

by the following parameters:



1) The probability measure function of the root node:
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3) The mean and variance ofw�
����

, givenS����� � 
:
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In order to simplify computations and to avoid the risk of
overfitting the HMT model, we assume that the statistical
parameters at the same scale are equal for all coefficients.
Therefore, the model parameters are indexed by� , denoting
that they are equal for all nodesi at the scale� . Finally, we
group the parameters for all probability trees into a vector�.

Unlike in [4], [5], we do not assume zero mean values, since
such an assumption would lead to substantial model error,
especially for the H feature that takes on values in the interval
��� ���. Also, much better image segmentation is obtained if
the number of possible states� is greater than 2; since this
introduces only a negligible increase in computation time, we
let � � � (unlike in [4], [5]).

A. EM algorithm

Due to the Markov property and the assumption of proba-
bility tree independence, the most likely value for��w�

� ���,
can be computed by maximizing the joint likelihood:
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where� � 	�	
Æ���
Æ� �� �
.
The last expression shows all the HMT parameters which

must be learned from observations. For training the HMT
model, we implement the iterative Expectation-Maximization
(EM) algorithm, as proposed in [4]. In theE step, the
state information is propagated throughout the tree by means
of the upward-downward algorithm. Here, at stepl of the
algorithm, the expectation value of the log-likelihood from
(3) is computed as follows:

������� ��S�
�

�
�� ��w�

� �S
�
� ��� � w�

� ��
�
�
�

�
�
�

�� ��w�
� �S

�
� ���	

�
S�� �
�w�

� ��
�
�
� (4)

Then, in theM step, we compute
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It has been proved that increasing the�-function is suf-
ficient to increase the likelihood��w�

� ��� [13]. We are not
concerned with the convergence rate in the training process,
because our data base contains long sequences of similar sky
and ground images. Hence,��, computed for one image, is
used as the input to compute��
� for the next image of the
training data base. Finally, after processing all sky training
images, we obtain���� , and similarly, for ground,�����	
.

Thus, the EM algorithm gives us the likelihoods of all
coefficients at all scales for a given class, say sky, as follows:
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Consequently, we are able to perform Bayesian classification
at all scales, without significant computational overhead.

B. Multiscale Bayesian Segmentation

Most segmentation algorithms employ a classification win-
dow of some size, which provides statistical information to
a classifier. A large classification window produces accurate
segmentation of large, homogeneous regions, but poor results
along their boundaries. On the other hand, a small window
yields unreliable classification. In our case, we require not
only recognition of the sky and ground regions, but also the
detection of the horizon with as much accuracy as possible.
Therefore, both large and small scale neighborhoods should be
analyzed. Naturally, to benefit from our already trained HMT
model, we again resort to its multiscale structure to perform
segmentation. Thus, we implement a multiscale segmentation
algorithm, similar to the one developed in [5].

Denoting with�� the collection of all class labels at the
scale � , �� � 	��

� 
, where ��
� � 	���� ������
, the

classification is performed according to the MAP rule, as
follows:
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where the expression (9) is derived assuming that coefficients
	w�

� 
 are mutually independent, given their class labels�� .
To compute the joint probability	 ����, we assume that the
distribution of�� is completely determined by��
� at the
coarser��	 scale. The conditional probability	 ���

� ��
�
��,

being unknown in general, must be estimated using a pro-
hibitive amount of data. In order to overcome this problem, we
introducecontexts [5]. To each coefficientw�

� , with the hidden
class label��

� , we assign the contextc�� , which represents the
information on��
�. In Figure 4, we illustrate our choice for
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Fig. 4. The Markov tree structure: a contextc�� is determined from the class
labels of nine parents�����

����
� at the coarser scale� � �.

contextsc�� . We assume that a set	c�� 
 represents a reliable
source of information on the distribution of all class labels at
��	 level and that	w�

� 
 are mutually independent, given their
corresponding contexts	c�� 
. Moving upward to the highest
tree level�, we apply the Markov chain rule to obtain the
expression for	 ����
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where, in the last step, we assume that the class labels	�
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of a dyadic square with the coarsest resolution are mutually
independent. Finally, from (9) and (11), we derive a more
convenient expression for the MAP rule:
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From the expression (12), it follows that the new Markov

tree, introduced to perform the multiscale image segmentation,
is completely characterized by prior probabilities	 ��

� �,
transition probabilities	 ���

� �c
�
� �, and likelihoods��w�

� ��
�
� �.

These values must be learned from the given training im-
ages. To estimate the prior and transition probabilities, we
once again implement the EM algorithm, using the already
known values for likelihoods. Once learned, these values are
then used in a Bayes classifier to obtain the desired image
segmentation.

IV. RESULTS

For training the HMT model, we recorded two sets of 500
sky and ground images. One set presented only the sky and
the other set contained air images of the ground. We carefully
chose the training sets to account for great variability within
the classes.

After experimenting with different image resolutions, we
found that the best trade off between processing time and per-

formance was achieved when������� original images were
subsampled to	���	�� pixels. At that resolution, the training
time on an Athlon 1.8GHz PC for	��� training images was
less than 2 minutes. Once trained, the HMT models of the sky
and ground were used for image segmentation. We noted that
for reading, subsampling and segmentation of a testing image
it took only ��	� seconds on an Athlon 1.8GHz PC.

Figures 5-7 we present segmentation results for three di-
verse sky/ground images; these results incorporated the Q-shift
Dual-Tree CWT introduced in [14].

V. CONCLUSION

Segmentation of complex image classes, such as sky and
ground, demands an elaborate consideration of class proper-
ties. Clearly, in some cases, color provides sufficient infor-
mation for sky and ground detection. However, due to video
noise and/or unfavorable class patterns, both color and texture
clues are necessary for successful recognition.

In this paper, we first presented our choice of features, con-
sisting of H and I values from the HSI color space, and CWT
coefficients. Then, we showed the implementation of the HMT
model and the training steps for obtaining its parameters. We
further described how the learned parameter set could be used
for computing likelihoods of all nodes at all scales of our
HMT. We then developed multiscale Bayesian classification
for our application. We incorporated in our design results
from the available literature, modifying the original algorithms
for our purposes where appropriate. Most importantly, we
incorporated color features into the HMT framework and
designed the consequent classifier with real-time constraints in
mind. Finally, we show sample classification results on diverse
sky/ground images.
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