
Rotation Invariant Neural Network-Based Face Detection
�

Henry A. Rowley
�

har@cs.cmu.edu
Shumeet Baluja

�����

baluja@jprc.com
�

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213�
Justsystem Pittsburgh Research Center, 4616 Henry Street, Pittsburgh, PA 15213

Takeo Kanade
�

tk@cs.cmu.edu

Abstract

In this paper, we present a neural network-based face de-
tection system. Unlike similar systems which are limited
to detecting upright, frontal faces, this system detects faces
at any degree of rotation in the image plane. The system
employs multiple networks; a “router” network first pro-
cesses each input window to determine its orientation and
then uses this information to prepare the window for one or
more “detector” networks. We present the training meth-
ods for both types of networks. We also perform sensitivity
analysis on the networks, and present empirical results on a
large test set. Finally, we present preliminary results for de-
tecting faces rotated out of the image plane, such as profiles
and semi-profiles.

1. Introduction
In our observations of face detector demonstrations, we

have found that users expect faces to be detected at any an-
gle, as shown in Figure 1. In this paper, we present a neural
network-based algorithm to detect faces in gray-scale im-
ages. Unlike similar previous systems which could only de-
tect upright, frontal faces [3, 4, 6–9, 12, 13, 15, 17, 18], this
system efficiently detects frontal faces which can be arbi-
trarily rotated within the image plane. We also present pre-
liminary results on detecting upright faces rotated out of the
image plane, such as profiles and semi-profiles.

Many face detection systems are template-based; they
encode facial images directly in terms of pixel intensities.
These images can be characterized by probabilistic models
of the set of face images [4, 7, 9], or implicitly by neural
networks or other mechanisms [3,6,8,12,13,15,17]. Other
researchers have taken the approach of extracting features
and applying either manually or automatically generated
rules for evaluating these features [5,18]. By using a graph-
matching algorithm on detected features, [5] also demon-
strated rotation invariance. We present a general method to
make template-based face detectors rotation invariant.

�
This work was partially supported by Hewlett-Packard Corporation,

Siemens Corporate Research, Inc., the Department of the Army, Army Re-
search Office (grant number DAAH04-94-G-0006), and by the Office of
Naval Research (grant number N00014-95-1-0591). The views and con-
clusions contained in this document are those of the authors, and do not
necessarily represent the official policies of the sponsors.

Our system directly analyzes image intensities using
neural networks, whose parameters are learned automati-
cally from training examples. There are many ways to use
neural networks for rotated-face detection. The simplest
would be to employ one of the existing frontal, upright,
face detection systems. Systems such as [12] use a neural-
network based filter that receives as input a small window of
the image, and generates an output signifying the presence
or absence of a face. To detect faces anywhere in the image,
the filter is applied at every location in the image. To detect
faces larger than the window size, the input image is repeat-
edly subsampled to reduce its size, and the filter is applied
at each scale. To extend this framework to capture rotated
faces, the entire image can be repeatedly rotated by small
increments and the detector can be applied to each rotated
image. However, this would be an extremely computation-
ally expensive procedure. For example, the system reported
in [12] was invariant to approximately

�	��

of rotation from

upright (both clockwise and counterclockwise). Therefore,
the entire detection procedure would need to be applied at
least 18 times to each image, with the image rotated in in-
crements of � �

 .

An alternate, significantly faster procedure is described
in this paper, extending some early results in [1]. This pro-
cedure uses a separate neural network, termed a “router”,
to analyze the input window before it is processed by the
face detector. The router’s input is the same region that the
detector network will receive as input. If the input contains
a face, the router returns the angle of the face. The window
can then be “derotated” to make the face upright. Note that

Figure 1. The output of our new system.

Output

Preprocessing

Histogram
Window Lighting

Receptive Fields
(20 by 20 pixels)

pixels
20 by 20

Input
Network

Hidden Units
Histogram

Units
Hidden

Output
Angle

Input

Router Network
Detection Network Architecture

Extracted Window Derotated Corrected
EqualizedEqualized

Input Image Pyramid

su
bs

am
pl

in
g

Figure 2. Overview of the algorithm.

the router network does not require a face as input. If a non-
face is encountered, the router will return a meaningless ro-
tation. However, since a rotation of a non-face will yield
another non-face, the detector network will still not detect
a face. On the other hand, a rotated face, which would not
have been detected by the detector network alone, will be
rotated to an upright position, and subsequently detected as
a face. Because the detector network is only applied once
at each image location, this approach is significantly faster
than exhaustively trying all orientations.

Detailed descriptions of the example collection and
training methods, network architectures, and arbitration
methods are given in Section 2. We then analyze the per-
formance of each part of the system separately in Section 3,
and test the complete system on two large test sets in Sec-
tion 4. We find that the system is able to detect 79.6% of
the faces over a total of 180 complex images, with a very
small number of false positives. Conclusions and directions
for future research are presented in Section 5.

2. Algorithm
The overall algorithm for the detector is given in Fig-

ure 2. Initially, a pyramid of images is generated from the
original image, using scaling steps of 1.2. Each 20x20 pixel
window of each level of the pyramid then goes through sev-
eral processing steps. First, the window is preprocessed us-
ing histogram equalization, and given to a router network.
The rotation angle returned by the router is then used to
rotate the window with the potential face to an upright po-
sition. Finally, the derotated window is preprocessed and
passed to one or more detector networks [12], which decide
whether or not the window contains a face.

The system as presented so far could easily signal that
there are two faces of very different orientations at adjacent
pixel locations in the image. To counter such anomalies,
and to reinforce correct detections, some arbitration heuris-
tics are employed. The design of the router and detector
networks and the arbitration scheme are presented in the
following subsections.

2.1. The Router Network
The first step in processing a window of the input image

is to apply the router network. This network assumes that
its input window contains a face, and is trained to estimate
its orientation. The inputs to the network are the intensity
values in a 20x20 pixel window of the image (which have
been preprocessed by a standard histogram equalization al-
gorithm). The output angle of rotation is represented by an
array of 36 output units, in which each unit

�
represents an

angle of
� � � �
 . To signal that a face is at an angle of � , each

output is trained to have a value of �������	��
 � � � �

� . This ap-
proach is closely related to the Gaussian weighted outputs
used in the autonomous driving domain [11]. Examples of
the training data are given in Figure 3.

Figure 3. Example inputs and outputs for training the
router network.

Previous algorithms using Gaussian weighted outputs in-
ferred a single value from them by computing an average of
the positions of the outputs, weighted by their activations.
For angles, which have a periodic domain, a weighted sum
of angles is insufficient. Instead, we interpret each output as
a weight for a vector in the direction indicated by the output
number

�
, and compute a weighted sum as follows:������ ����� ����������� � � ���
��� � � �	�
 �� �!�� �"��� �
��������� � � �$#&%'� � � � �
 �)(

The direction of this average vector is interpreted as the an-
gle of the face.

The training examples are generated from a set of manu-
ally labelled example images containing 1048 faces. In each
face, the eyes, tip of the nose, and the corners and center of
the mouth are labelled. The set of labelled faces are then
aligned to one another using an iterative procedure [12].
We first compute the average location for each of the la-
belled features over the entire training set. Then, each face
is aligned with the average feature locations, by computing
the rotation, translation, and scaling that minimizes the dis-
tances between the corresponding features. Because such
transformations can be written as linear functions of their
parameters, we can solve for the best alignment using an
over-constrained linear system. After iterating these steps a
small number of times, the alignments converge.

Figure 4. Left: Average of upright face examples.
Right: Positions of average facial feature locations
(white circles), and the distribution of the actual fea-
ture locations from all the examples (black dots).

The averages and distributions of the feature locations
are shown in Figure 4. Once the faces are aligned to have a
known size, position, and orientation, we can control the
amount of variation introduced into the training set. To
generate the training set, the faces are rotated to a random
(known) orientation, which will be used as the target output
for the router network. The faces are also scaled randomly
(in the range from 1 to 1.2) and translated by up to half a
pixel. For each of 1048 faces, we generate 15 training ex-
amples, yielding a total of 15720 examples.

The architecture for the router network consists of three
layers, an input layer of 400 units, a hidden layer of 15 units,
and an output layer of 36 units. Each layer is fully con-
nected to the next. Each unit uses a hyperbolic tangent ac-
tivation function, and the network is trained using the stan-
dard error backpropogation algorithm.

2.2. The Detector Network
After the router network has been applied to a window

of the input, the window is derotated to make any face that
may be present upright.

The remaining task is to decide whether or not the win-
dow contains an upright face. The algorithm used for de-
tection is identical to the one presented in [12]. The resam-
pled image, which is also 20x20 pixels, is preprocessed in
two steps [13]. First, we fit a function which varies lin-
early across the window to the intensity values in an oval
region inside the window. The linear function approximates
the overall brightness of each part of the window, and can

be subtracted to compensate for a variety of lighting condi-
tions. Second, histogram equalization is performed, which
expands the range of intensities in the window. The pre-
processed window is then given to one or more detector
networks. The detector networks are trained to produce an
output of

� ��� �
if a face is present, and
 �����

otherwise.
The detectors have two sets of training examples: images

which are faces, and images which are not. The positive
examples are generated in a manner similar to that of the
router; however, as suggested in [12], the amount of rotation
of the training images is limited to the range
 �	�

to
� �

.
Training a neural network for the face detection task is

challenging because of the difficulty in characterizing pro-
totypical “non-face” images. Unlike face recognition, in
which the classes to be discriminated are different faces,
the two classes to be discriminated in face detection are “im-
ages containing faces” and “images not containing faces”. It
is easy to get a representative sample of images which con-
tain faces, but much harder to get a representative sample of
those which do not. Instead of collecting the images before
training is started, the images are collected during training
in the following “bootstrap” manner, adapted from [13]:

1. Create an initial set of 1000 random non-face images.
2. Train the neural network to produce an output of ����� 	 for

the face examples, and
���� 	 for the non-face examples. In
the first iteration, the network’s weights are initialized ran-
domly. After the first iteration, we use the weights computed
by training in the previous iteration as the starting point.

3. Run the system on an image of scenery which contains no
faces. Collect subimages in which the network incorrectly
identifies a face (an output activation �
	��).

4. Select up to 250 of these subimages at random, and add them
into the training set as negative examples. Go to step 2.

Some examples of non-faces that are collected during train-
ing are shown in Figure 5. At runtime, the detector network
will be applied to images which have been derotated, so it
may be advantageous to collect negative training examples
from the set of derotated non-face images, rather than only
non-face images in their original orientations. In Section 4,
both possibilities are explored.

Figure 5. Left: A partially-trained system is applied
to images which do not contain faces. Right: Any re-
gions detected as faces are errors, which can be added
into the set of negative training examples.

2.3. The Arbitration Scheme
As mentioned earlier, it is possible for the system de-

scribed so far to signal faces of very different orientations at

adjacent pixel locations. A simple postprocessing heuristic
is employed to rectify such inconsistencies. Each detection
is placed in a 4-dimensional space, where the dimensions
are the � and � positions of the center of the face, the level
in the image pyramid at which the face was detected, and
the angle of the face, quantized to increments of

�	��

. For

each detection, we count the number of detections within
4 units along each dimension (4 pixels, 4 pyramid levels,
or � �
). This number can be interpreted as a confidence
measure, and a threshold is applied. Once a face passes the
threshold, any other detections in the 4-dimensional space
which would overlap it are discarded.

Although this postprocessing heuristic was found to be
quite effective at eliminating false detections, we have
found that a single detection network still yields an unac-
ceptably high false detection rate. To further reduce the
number of false detections, and reinforce correct detections,
we arbitrate between two independently trained detector
networks, as in [12]. Each network is given the same set of
positive examples, but starts with different randomly set ini-
tial weights. Therefore, each network learns different fea-
tures, and makes different mistakes. To use the outputs of
these two networks, the postprocessing heuristics of the pre-
vious paragraph are applied to the outputs of each individ-
ual network, and then the detections from the two networks
are ANDed. The specific preprocessing thresholds used in
the experiments will be given in Sections 4. These arbitra-
tion heuristics are very similar to, but computationally less
expensive than, those presented in [12].

3. Analysis of the Networks
In order for the system described above to be accurate,

the router and detector must perform robustly and compat-
ibly. Because the output of the router network is used to
derotate the input for the detector, the angular accuracy of
the router must be compatible with the angular invariance of
the detector. To measure the accuracy of the router, we gen-
erated test example images based on the training images,
with angles between
�� �

 and � �
 at

�

increments. These

images were given to the router, and the resulting histogram
of angular errors is given in Figure 6 (left). As can be seen,� ��� of the errors are within � �	�

.
The detector network was trained with example images

having orientations between
 � �

and

�	�

. It is important

to determine whether the detector is in fact invariant to rota-
tions within this range. We applied the detector to the same
set of test images as the router, and measured the fraction
of faces which were correctly classified as a function of the
angle of the face. Figure 6 (right) shows that the detector
detects over 90% of the faces that are within

�	��

of upright,

but the accuracy falls with larger angles. In summary, since
the router’s angular errors are usually within

� ��

, and since

the detector can detect most faces which are rotated up to�	�

, the two networks are compatible.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

-30 -20 -10 0 10 20 30

F
re

q
u

e
n

c
y

 o
f

E
rr

o
r

Angular Error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-30 -20 -10 0 10 20 30

F
ra

c
ti

o
n

 o
f

F
a

c
e

s
 D

e
te

c
te

d

Angle from Upright

Figure 6. Left: Frequency of errors in the router net-
work with respect to the angular error (in degrees).
Right: Fraction of faces that are detected by the de-
tector networks, as a function of the angle of the face
from upright.

4. Empirical Results
In this section, we integrate the pieces of the system, and

test it on two sets of images. The first set, which we will call
the upright test set, is Test Set 1 from [12]. It contains many
images with faces against complex backgrounds and many
images without any faces. There are a total of 130 images,
with 511 faces (of which 469 are within

�	��

of upright),

and 83,099,211 windows to be processed. The second test
set, referred to as the rotated test set, consists of 50 images
(with 34,064,635 windows) containing 223 faces, of which
210 are at angles of more than

� �

from upright.1

The upright test set is used as a baseline for comparison
with an existing upright face detection system [12]. This
will ensure that the modifications for rotated faces do not
hamper the ability to detect upright faces. The rotated test
set will demonstrate the new capabilities of our system.

4.1. Router Network with Upright Face Detectors
The first system we test employs the router network

to determine the orientation of any potential face, and
then applies two standard upright face detection networks
from [12]. Table 1 shows the number of faces detected
and the number of false alarms generated on the two test
sets. We first give the results of the individual detection
networks, and then give the results of the post-processing
heuristics (using a threshold of one detection). The last row
of the table reports the result of arbitrating the outputs of
the two networks, using an AND heuristic. This is imple-
mented by first post-processing the outputs of each individ-
ual network, followed by requiring that both networks sig-
nal a detection at the same location, scale, and orientation.
As can be seen in the table, the post-processing heuristics
significantly reduce the number of false detections, and ar-
bitration helps further. Note that the detection rate for the
rotated test set is higher than that for the upright test set, due
to differences in the overall difficulty of the two test sets.

1These test sets are available over the World Wide Web at the URL
http://www.cs.cmu.edu/˜har/faces.html.

Table 1. Results of first applying the router network,
then applying the standard detector networks [12] at
the appropriate orientation.

Upright Test Set Rotated Test Set
System Detect % # False Detect % # False

Network 1 89.6% 4835 91.5% 2174
Network 2 87.5% 4111 90.6% 1842
Net 1 � Postproc 85.7% 2024 89.2% 854
Net 2 � Postproc 84.1% 1728 87.0% 745
Postproc � AND 81.6% 293 85.7% 119

4.2. Proposed System
Table 1 shows a significant number of false detections.

This is in part because the detector networks were applied
to a different distribution of images than they were trained
on. In particular, at runtime, the networks only saw images
that were derotated by the router. We would like to match
this distribution as closely as possible during training. The
positive examples used in training are already in upright po-
sitions. During training, we can also run the scenery im-
ages from which negative examples are collected through
the router. We trained two new detector networks using this
scheme, and their performance is summarized in Table 2.
As can be seen, the use of these new networks reduces the
number of false detections by at least a factor of 4. Of
the systems presented here, this one has the best trade-off
between the detection rate and the number of false detec-
tions. Images with the detections resulting from arbitrating
between the networks are given in Figure 7 .

Table 2. Results of our system, which first applies the
router network, then applies detector networks trained
with derotated negative examples.

Upright Test Set Rotated Test Set
System Detect % # False Detect % # False

Network 1 81.0% 1012 90.1% 303
Network 2 83.2% 1093 89.2% 386
Net 1 � Postproc 80.2% 710 89.2% 221
Net 2 � Postproc 82.4% 747 88.8% 252
Postproc � AND 76.9% 34 85.7% 15

4.3. Exhaustive Search of Orientations
To demonstrate the effectiveness of the router for rota-

tion invariant detection, we applied the two sets of detector
networks described above without the router. The detectors
were instead applied at 18 different orientations (in incre-
ments of � �
) for each image location. Table 3 shows the
results using the standard upright face detection networks
of [12], and Table 4 shows the results using the detection
networks trained with derotated negative examples.

Recall that Table 1 showed a larger number of false posi-
tives compared with Table 2, due to differences in the train-
ing and testing distributions. In Table 1, the detection net-
works were trained with false-positives in their original ori-
entations, but were tested on images that were rotated from
their original orientations. Similarly, if we apply detector

Table 3. Results of applying the standard detector net-
works [12] at 18 different image orientations.

Upright Test Set Rotated Test Set
System Detect % # False Detect % # False

Network 1 93.7% 17848 96.9% 7872
Network 2 94.7% 15828 95.1% 7328
Net 1 � Postproc 87.5% 4828 94.6% 1928
Net 2 � Postproc 89.8% 4207 91.5% 1719
Postproc � AND 85.5% 559 90.6% 259

Table 4. Networks trained with derotated examples,
but applied at all 18 orientations.

Upright Test Set Rotated Test Set
System Detect % # False Detect % # False

Network 1 90.6% 9140 97.3% 3252
Network 2 93.7% 7186 95.1% 2348
Net 1 � Postproc 86.9% 3998 96.0% 1345
Net 2 � Postproc 91.8% 3480 94.2% 1147
Postproc � AND 85.3% 195 92.4% 67

networks to images at all 18 orientations, we should expect
an increase in the number of false positives because of the
differences in the training and testing distributions (see Ta-
bles 3 and 4). The detection rates are higher than for sys-
tems using the router network. This is because any error
by the router will lead to a face being missed, whereas an
exhaustive search of all orientations may find it. Thus, the
differences in accuracy can be viewed as a tradeoff between
the detection and false detection rates, in which better detec-
tion rates come at the expense of much more computation.

4.4. Upright Detection Accuracy
Finally, to check that adding the capability of detecting

rotated faces has not come at the expense of accuracy in
detecting upright faces, in Table 5 we present the result
of applying the original detector networks and arbitration
method from [12] to the two test sets used in this paper.2 As
expected, this system does well on the upright test set, but
has a poor detection rate on the rotated test set.

Table 5. Results of applying the original algorithm
and arbitration method from [12] to the two test sets.

Upright Test Set Rotated Test Set
System Detect % # False Detect % # False

Network 1 90.6% 928 20.6% 380
Network 2 92.0% 853 19.3% 316
Net 1 � Postproc 89.4% 516 20.2% 259
Net 2 � Postproc 90.6% 453 17.9% 202
Threshold � AND 85.3% 31 13.0% 11

Table 6 shows a breakdown of the detection rates of the
above systems on faces that are rotated less or more than�	�

from upright. As expected, the original upright face de-
tector trained exclusively on upright faces and negative ex-
amples in their original orientations gives a high detection

2The results for the upright test set are slightly different from those
presented in [12] because we now check for the detection of 4 upside-
down faces, which were present, but ignored, in the original test set. Also,
there are slight differences in the way the image pyramid is generated.

2/2/1

1/1/0

6/6/0

125/135/12

275x350

1/1/0

610x395

97x101

2615x1986

225x279

275x369

520x739

1/1/0

1/1/0

640x480

275x350

1/1/0

1/1/0

6/6/0

13/14/0

267x400

256x256

1/1/0

1/1/0

255x359

1/1/0

480x640320x240

340x350

5/5/0

394x594

640x438

5/6/0

1/2/0

375x531

7/7/0

150x187

3/3/0

640x438

2/2/0

8/8/1

185x252

1/1/0

234x313

1/1/0

2/2/0

228x297
1/1/0

410x580

348x352

Figure 7. Result of arbitrating between two networks trained with derotated negative examples. The label in the upper
left corner of each image (D/T/F) gives the number of faces detected (D), the total number of faces in the image (T),
and the number of false detections (F). The label in the lower right corner of each image gives its size in pixels.

rate on upright faces. Our new system has a slightly lower
detection rate on upright faces for two reasons. First, the
detector networks cannot recover from all the errors made
by the router network. Second, the detector networks which
are trained with derotated negative examples are more con-
servative in signalling detections; this is because the dero-
tation process makes the negative examples look more like
faces, which makes the classification problem harder.

Table 6. Breakdown of detection rates for upright and
rotated faces from both test sets.

All Upright Faces Rotated Faces
System Faces (

� �����
) (�

�����
)

New system (Table 2) 79.6% 77.2% 84.1%
Upright detector [12] 63.4% 88.0% 16.3%

5. Summary and Extensions
This paper has demonstrated the effectiveness of detect-

ing faces rotated in the image plane by using a router net-
work in combination with an upright face detector. The sys-
tem is able to detect 79.6% of faces over two large test sets,
with a small number of false positives. The technique is ap-
plicable to other template-based object detection schemes.

We are investigating the use of the above scheme to han-
dle out-of-plane rotations. There are two ways in which
this could be approached. The first is directly analogous to
handling in-plane rotations: using knowledge of the shape
and symmetry of the face, it may be possible to convert a
profile or semi-profile view of a face to a frontal view (for
related work, see [2, 16]). A second approach, and the one
we have explored, is to partition the views of the face, and
to train separate detector networks for each view. We used
five views: left profile, left semi-profile, frontal, right semi-
profile, and right profile. The router is responsible for di-
recting the input window to one of these view detectors [19].

Figure 8 shows some preliminary results. As can be
seen, there are still a significant number of false detections
and missed faces. We suspect that one reason for this is
that our training data is not representative of the variations
present in real images. Most of our profile training images
are taken from the FERET database [10], which has very
uniform lighting conditions.

Figure 8. Detection of faces rotated out-of-plane.

There are two immediate directions for future work.
First, it would be interesting to merge the systems for in-
plane and out-of-plane rotations. One approach is to build
a single router which recognizes all views of the face, then

rotates the image in-plane to a canonical orientation, and
presents the image to the appropriate view detector net-
work. The second area for future work is improvement to
the speed of the system. Based on the work of [14], [12]
presented a quick algorithm based on the use of a fast (but
somewhat inaccurate) candidate detector network, whose
results could then be checked by the detector networks. A
similar technique may be applicable to the present work.

References
[1] S. Baluja. Face detection with in-plane rotation: Early concepts and

preliminary results. Technical Report JPRC-1997-001-1, Justsys-
tem Pittsburgh Research Center, 1997.

[2] D. Beymer, A. Shashua, and T. Poggio. Example based image
analysis and synthesis. Technical Report A.I. Memo 1431, MIT,
November 1993.

[3] G. Burel and D. Carel. Detection and localization of faces on digital
images. Pattern Recognition Letters, 15:963–967, October 1994.

[4] A. J. Colmenarez and T. S. Huang. Face detection with information-
based maximum discrimination. In Computer Vision and Pattern
Recognition, pages 782–787, 1997.

[5] T. K. Leung, M. C. Burl, and P. Perona. Finding faces in cluttered
scenes using random labeled graph matching. In Fifth International
Conference on Computer Vision, pages 637–644, June 1995.

[6] S. H. Lin, S. Y. Kung, and L. J. Lin. Face recognition/detection by
probabilistic decision-based neural network. IEEE Transactions on
Neural Networks, Special Issue on Artificial Neural Networks and
Pattern Recognition, 8(1), January 1997.

[7] B. Moghaddam and A. Pentland. Probabilistic visual learning for
object detection. In Fifth International Conference on Computer
Vision, pages 786–793, June 1995.

[8] E. Osuna, R. Freund, and F. Girosi. Training support vector ma-
chines: an application to face detection. In Computer Vision and
Pattern Recognition, pages 130–136, 1997.

[9] A. Pentland, B. Moghaddam, and T. Starner. View-based and mod-
ular eigenspaces for face recognition. In Computer Vision and Pat-
tern Recognition, pages 84–91, 1994.

[10] P. J. Phillips, P. J. Rauss, and S. Z. Der. FERET (face recogni-
tion technology) recognitionalgorithm developmentand test results.
Technical Report ARL-TR-995, Army Research Laboratory, Octo-
ber 1996.

[11] D. Pomerleau. Neural Network Perception for Mobile Robot Guid-
ance. PhD thesis, Carnegie Mellon University, February 1992.

[12] H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based
face detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(1), January 1998.

[13] K.-K. Sung. Learning and Example Selection for Object and Pattern
Detection. PhD thesis, MIT AI Lab, January 1996.

[14] T. Umezaki. Personal communication, 1995.
[15] R. Vaillant, C. Monrocq, and Y. Le Cun. Original approach for the

localisation of objects in images. IEE Proceedingson Vision, Image,
and Signal Processing, 141(4), August 1994.

[16] T. Vetter, M. J. Jones, and T. Poggio. A bootstrapping algorithm for
learning linear models of object classes. In Computer Vision and
Pattern Recognition, pages 40–46, June 1997.

[17] G. Yang and T. S. Huang. Human face detection in a complex back-
ground. Pattern Recognition, 27(1):53–63, 1994.

[18] K. C. Yow and R. Cipolla. Feature-based human face detection.
Technical Report CUED/F-INFENG/TR 249, Department of Engi-
neering, University of Cambridge, England, 1996.

[19] M. Zhang and J. Fulcher. Face recognition using artificial neural
network group-based adaptive tolerance (GAT) trees. IEEE Trans-
actions on Neural Networks, 7(3):555–567, 1996.

