
Some Notes on 3D Computer Vision

(last edited 04/20/2004)

1 Introduction

This short set of notes is intended to be a helpful guide for the final assignment. It complements the lectures,
and other materials on 3D computer vision posted on the course web site at:

http://mil.ufl.edu/~nechyba/eel6562/course_materials.html

2 Camera calibration

In this section, we show how to compute the projection matrix P that maps 3D world coordinates onto 2D
image coordinates.

2.1 Definitions

Let (x, y) denote a 2D image coordinate corresponding to a 3D world coordinate (X, Y, Z). Then, the
projection matrix P ,

P =





p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34



 (1)

defines the mapping from 3D world coordinates to 2D image coordinates, such that,





sx

sy

s



 =





p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34













X

Y

Z

1









(2)

where s denotes an arbitrary homogeneous scale factor. Note that the projection matrix P is a function of
both the intrinsic and extrinsic parameters of the camera.

2.2 Estimation of P

Here, we assume that we are given a set of n points for which we know both the 2D image coordinates
(xk, yk) and 3D world coordinates (Xk, Yk, Zk), k ∈ {1, . . . , n}. From these, we would like to estimate P .

Let us first expand equation (2), to arrive at the following 3D to 2D mapping:

x =
p11X + p12Y + p13Z + p14

p31X + p32Y + p33Z + p34

(3)

y =
p21X + p22Y + p23Z + p24

p31X + p32Y + p33Z + p34

(4)

In equations (3) and (4), (x, y) and (X, Y, Z) are known, and the parameters of the projection matrix P , pij ,

1

i ∈ {1, 2, 3}, j ∈ {1, 2, 3, 4} are unknown. We can rewrite equations (3) and (4) in matrix-vector notation as:

[

−X −Y −Z −1 0 0 0 0 xX xY xZ x

0 0 0 0 −X −Y −Z −1 yX yY yZ y

]









































p11

p12

p13

p14

p21

p22

p23

p24

p31

p32

p33

p34









































=

[

0
0

]

(5)

Thus, each pair of points, (xk, yk) and (Xk, Yk, Zk), gives us two linear constraints (equations) in terms of
the 12 unknown parameters P . For n points we get 2n constraints:























−X1 −Y1 −Z1 −1 0 0 0 0 x1X1 x1Y1 x1Z1 x1

0 0 0 0 −X1 −Y1 −Z1 −1 y1X1 y1Y1 y1Z1 y1

−X2 −Y2 −Z2 −1 0 0 0 0 x2X2 x2Y2 x2Z2 x2

0 0 0 0 −X2 −Y2 −Z2 −1 y2X2 y2Y2 y2Z2 y2

...
...

...
...

...
...

...
...

...
...

...
...

−Xn −Yn −Zn −1 0 0 0 0 xnXn xnYn xnZn xn

0 0 0 0 −Xn −Yn −Zn −1 ynXn ynYn ynZn yn































































p11

p12

p13

p14

p21

p22

p23

p24

p31

p32

p33

p34









































=























0
0
0
0
...
0
0























(6)

Ap = 0 (7)

There are two ways we can solve for the parameters p in (7) (which is short-hand notation for equation (6)
above). We can arbitrarily set one of the parameters in p equal to 1 (e.g. p34 = 1), such that:























−X1 −Y1 −Z1 −1 0 0 0 0 x1X1 x1Y1 x1Z1

0 0 0 0 −X1 −Y1 −Z1 −1 y1X1 y1Y1 y1Z1

−X2 −Y2 −Z2 −1 0 0 0 0 x2X2 x2Y2 x2Z2

0 0 0 0 −X2 −Y2 −Z2 −1 y2X2 y2Y2 y2Z2

...
...

...
...

...
...

...
...

...
...

...
−Xn −Yn −Zn −1 0 0 0 0 xnXn xnYn xnZn

0 0 0 0 −Xn −Yn −Zn −1 ynXn ynYn ynZn



























































p11

p12

p13

p14

p21

p22

p23

p24

p31

p32

p33





































=























−x1

−y1

−x2

−y2

...
−xn

−yn























(8)

Ap = b (9)

Equation (9) can now be solved using linear least squares:

p = (AT A)−1AT b (10)

Alternatively, we can minimize Ap subject to the constraint ||p|| 6= 0 (e.g. ||p|| = 1), such that p will be
given by,

min
p

||Ap||, ||p|| = 1 (11)

2

For the problem formulation in equation (11), the solution for p is given by the eigenvector v of ATA

corresponding to the smallest eigenvalue. This eigenvector v can be computed through singular value de-
composition (SVD) [2]. SVD is an extremely useful linear algebra tool that decomposes any m × n matrix
A, m > n as follows:

A = UDVT (12)

where U is an m × n orthogonal matrix, D is an n × n diagonal matrix whose diagonal elements σi are the
singular values of A, arranged from largest to smallest, and V is an n×n orthogonal matrix of eigenvectors
vi corresponding to singular values σi. In this decomposition, the last column of V corresponds to the
solution for p.

Thus, to solve for p in equation (11), we first compute the SVD decomposition of A or ATA, and then assign
the last column of the resulting V matrix as our solution. Functions for doing SVD are readily available in
most mathematical software packages, including Matlab and Mathematica.

2.3 Triangulation from multiple views

Here, we assume that we are given the 2D image coordinates of a 3D point in the world in two different
views of the same scene; let us denote these 2D coordinates as (x, y) and (x′, y′). Furthermore, we assume
that we know the projection matrices P and P ′ corresponding to the two different views. Our goal here is
to estimate the 3D coordinate X = (X, Y, Z) of the imaged point.

Rewriting equations (3) and (4), we get:









xp31 − p11 xp32 − p12 xp33 − p13

yp31 − p21 yp32 − p22 yp33 − p23

x′p′31 − p′11 x′p′32 − p′12 x′p′33 − p′13
y′p′

31
− p′

21
y′p′

32
− p′

22
y′p′

33
− p′

23













X

Y

Z



 =









−(xp34 − p14)
−(yp34 − p24)
−(x′p′34 − p′14)
−(y′p′

34
− p′

24
)









(13)

AX = b (14)

Now, equation (14) can be solved for X using equation (10).

3 Two-view epipolar geometry

In this section, we discuss several ways of computing the fundamental matrix F that defines the epipolar
geometry relating two views of the same scene; we assume that some number of corresponding 2D image-point
pairs (x, y) and (x′, y′) are known.

3.1 Definitions

Let,

x =





x

y

1



 , x′ =





x′

y′

1



 (15)

denote the homogeneous representation of corresponding 2D image coordinates (x, y) and (x′, y′). Then, the
fundamental matrix F ,

F =





f11 f12 f13

f21 f22 f23

f31 f32 f33



 (16)

defines the epipolar geometry such that,
x′T Fx = 0 (17)

3

In lecture, we showed that F can be represented as a function of the intrinsic parameters K and K ′ and the
relative orientation and translation between the two views R and t as:

F = K ′−T [t]×RK−1 (18)

where for a vector v =
[

v1 v2 v3

]T
,

[v]× =





0 −v3 v2

v3 0 −v1

−v2 v1 0



 (19)

As such, F is a matrix of rank 2 (i.e. det(F) = 0) and is determined only up to a scale factor, as can be
seen from equation (18).

3.2 Estimation of F

Here, we assume that n corresponding 2D image-point pairs, (xk, yk) and (x′

k, y′

k), k ∈ {1, . . . , n} are known,
and that their homogeneous representation is given by xk and x′

k, respectively.1 From these, we would like
to estimate F .

Let us expand equation (17):

[

x′x x′y x′ y′x y′y y′ x y 1
]





























f11

f12

f13

f21

f22

f23

f31

f32

f33





























= 0 (20)

Thus, each pair of 2D image points, (xk, yk) and (x′

k, y′

k), gives us one linear constraint (equation) in terms
of the 9 unknown parameters F . For n points we get:















x′

1x1 x′

1y1 x′

1 y′

1x1 y′

1y1 y′

1 x1 y1 1
x′

2
x2 x′

2
y2 x′

2
y′

2
x2 y′

2
y2 y′

2
x2 y2 1

x′

3
x3 x′

3
y3 x′

3
y′

3
x3 y′

3
y3 y′

3
x3 y3 1

...
...

...
...

...
...

...
...

...
x′

nxn x′

nyn x′

n y′

nxn y′

nyn y′

n xn yn 1











































f11

f12

f13

f21

f22

f23

f31

f32

f33





























= 0 (21)

Af = 0 (22)

In the subsections below, we describe several different algorithms for computing F , starting with equation
(22). First, however, we discuss how to evaluate the quality of estimation for F .

1For the purposes of these notes, we assume that all correspondences are correct; that is, we don’t consider the possibility

of mismatched pairs. If such outliers do exist, the RANSAC algorithm should be applied to detect and remove these outliers.

4

3.3 Evaluation of F estimation

In the presence of noise (e.g. small errors in 2D image coordinates of corresponding pairs xk and x′

k),

x′

kFxk 6= 0 (23)

In other words, x′

k in one image will not, in general, fall exactly on the epipolar line Fxk, and xk will not, in
general, fall exactly on the epipolar line FTx′

k. Therefore, we can measure the quality of the F estimation
as a function of the distance between image points and epipolar lines. Consider a homogeneous point x and
2D-line ` (in homogeneous notation):

x =





x

y

1



 , ` =





λ

µ

ν



 (24)

Then, the distance d(x, `) between x and ` is given by [1],

d(x, `) =
xT `

√

λ2 + µ2
(25)

Therefore, for a set of 2D image-point pairs,

J =
∑

k

d(x′

k, Fxk)2 + d(xk, FTx′

k)2 (26)

defines a cost function that measures the quality of the F estimation; the closer J is to zero, the better is
the estimate of F .

3.4 Eight-point algorithm

As before, we can apply SVD, such that f is given by,

min
f

||Af||, ||f|| = 1 (27)

However, this solution for F (i.e. f) is not guaranteed to be of rank 2. We can enforce this constraint, by
applying SVD once again. Let,

F = UDVT (28)

where,

D =





σ1 0 0
0 σ2 0
0 0 σ3



 (29)

Then, the closest singular matrix F ′ to F is given by,

F ′ = UD’VT (30)

where,

D’ =





σ1 0 0
0 σ2 0
0 0 0



 (31)

Note: While this algorithm is known as the “eight-point algorithm”, obviously more pairs of corresponding
image points can and should be used for better results; “eight” simply refers to the smallest allowable number
of points.

5

3.5 Normalized eight-point algorithm

This algorithm proceeds as the “eight-point” algorithm, except that homogeneous coordinates xk and x′

k

are first mapped through an affine transformation T and T ′ that seeks to mitigate poor conditioning of the
matrix AT A in equation (22). Here’s an outline of the algorithm:

1. Transform coordinates xk and x′

k to x̂k and x̂
′

k, respectively, where,

x̂k = Txk, x̂
′

k = T ′x′

k. (32)

2. Find the fundamental matrix F̂ corresponding to the transformed image coordinates x̂k and x̂
′

k using
the eight-point algorithm from above (including enforcement of the rank 2 constraint).

3. Set F = T ′T F̂ T as the fundamental matrix corresponding to the original, untransformed coordinates
xk and x′

k.

See Section 5 in [1], for more information on appropriate mappings T , T ′.

3.6 Seven-point algorithm

In the seven-point algorithm, the rank 2 constraint (i.e. det(F) = 0) is explicitly enforced. Once again, SVD
plays a hand. Let

A = UDVT (33)

where A refers to equation (22). Without proof of why this should be so, the solution for F (i.e. f) is now
parameterized as,

f = f1 + λf2 (34)

or, alternatively,
F = F1 + λF2 (35)

where f1 and f2 are the two right-most columns of V in (33). The constraint det(F) = 0 leads to a cubic
polynomial in λ,

λ3 + a2λ
2 + a1λ + a0 = 0 (36)

which will yield either one or three real-valued solutions in λ.

To find the correct value for λ in the case of multiple real-valued solutions, one can first perform the above
computations on a subset (≥ 7) of all available correspondences, and then evaluate the cost function J in
equation (26) over all correspondences for the three possible values of λ. The correct value of λ will yield
the smallest value of J .

Note: While this algorithm is known as the “seven-point algorithm”, obviously more pairs of corresponding
image points can and should be used for better results; “seven” simply refers to the smallest allowable
number of points.

3.7 Nonlinear minimization

The quality of the F estimation for the above summarized algorithms can typically be improved substantially
through iterative, nonlinear optimization of criterion J in equation (26). Such minimization proceeds as
follows:

1. Find an initial estimate F0 through, for example, the eight-point algorithm.

2. Using F0 as the initial estimate, minimize J through nonlinear optimization (e.g. Levenberg-Marquardt,
conjugate-gradient, etc.)

6

References

[1] R. I. Hartley, “In Defense of the Eight-Point Algorithm,” IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence, vol. 19, no. 6, pp. 580-93, 1997.

[2] W. H. Press, et. al, Numerical Recipes in C: the Art of Scientific Computing, 2nd ed., Section 2.6, pp.
59-70, Cambridge University Press, Cambridge, 1992.

7

