

Scenarios

The objective
The two images can arise from

- A stereo rig consisting of two cameras
- the two images are acquired simultaneously
or
- A single moving camera (static scene)
- the two images are acquired sequentially

The two scenarios are geometrically equivalent
Given two images of a scene acquired by known cameras compute the 3D position of the scene (structure recovery)

Basic principle: triangulate from corresponding image points

- Determine 3D point at intersection of two back-projected rays

Corresponding points are images of the same scene point

Triangulation

The back-projected points generate rays which intersect at the 3D scene point

An algorithm for stereo reconstruction

Outline

1. For each point in the first image determine the corresponding point in the second image
(this is a search problem)
2. For each pair of matched points determine the 3D point by triangulation
(this is an estimation problem)

The correspondence problem

Given a point x in one image find the corresponding point in the other image

This appears to be a 2D search problem, but it is reduced to a 1D search

Notation

The two cameras are P and P^{\prime}, and a 3 D point \mathbf{X} is imaged as

$$
x=P X \quad x^{\prime}=P^{\prime} X
$$

P : 3×4 matrix
X : 4-vector
x : 3-vector

Warning

by the epipolar constraint

Nomenclature

- The epipolar line \mathbf{l}^{k} is the image of the ray through \mathbf{x}
- The epipole \mathbf{e} is the point of intersection of the line joining the camera centres with the image plane
- this line is the baseline for a stereo rig, and
- the translation vector for a moving camera
- The epipole is the image of the centre of the other camera: $\mathbf{e}=P \mathbf{C}^{\prime}, \mathbf{e}^{\prime}=\mathrm{P}^{\prime} \mathbf{C}$

The epipolar pencil

As the position of the 3D point \mathbf{X} varies, the epipolar planes "rotate" about the baseline. This family of planes is known as an epipolar pencil. All epipolar lines intersect at the epipole.
(a pencil is a one parameter family)

Epipolar geometry example I: parallel cameras

Epipolar geometry depends only on the relative pose (position and orientation) and internal parameters of the two cameras, i.e. the position of the camera centres and image planes. It does not depend on the scene structure (3D points external to the camera).

Epipolar geometry example II: converging cameras

Note, epipolar lines are in general not parallel

Homogeneous notation for lines

Matrix representation of the vector cross product

Recall that a point (x, y) in 2D is represented by the homogeneous
3 -vector $\mathrm{x}=\left(x_{1}, x_{2}, x_{3}\right)^{\top}$, where $x=x_{1} / x_{3}, y=x_{2} / x_{3}$
The vector product $\mathbf{v} \times \mathbf{x}$ can be represented as a matrix multiplication
A line in 2D is represented by the homogeneous 3-vector

$$
\mathrm{l}=\left(\begin{array}{l}
l_{1} \\
l_{2} \\
l_{2}
\end{array}\right)
$$

which is the line $l_{1} x+l_{2} y+l_{3}=0$.
Example represent the line $y=1$ as a homogeneous vector
Write the line as $-y+1=0$ then $l_{1}=0, l_{2}=-1, l_{3}=1$, and $1=(0,-1,1)^{\top}$

Note that $\mu\left(l_{1} x+l_{2} y+l_{3}\right)=0$ represents the same line (only the ratio of the homogeneous line coordinates is significant)

Writing both the point and line in homogeneous coordinates gives

$$
l_{1} x_{1}+l_{2} x_{2}+l_{3} x_{3}=0
$$

point on line $1 . x=0$ or $1^{\top} x=0$ or $x^{\top} l=0$

- The line \mathbf{l} through the two points \mathbf{p} and \mathbf{q} is $\mathbf{l}=\mathbf{p} \times \mathbf{q}$

Proof

Example: compute the cross product of I and \mathbf{m}

$$
\begin{aligned}
& \mathbf{l}=\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) \quad \mathbf{m}=\left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right) \quad[\mathbf{v}]_{\times}=\left[\begin{array}{ccc}
0 & -v_{3} & v_{2} \\
v_{3} & 0 & -v_{1} \\
-v_{2} & v_{1} & 0
\end{array}\right] \\
& \mathbf{x}=\mathbf{l} \times \mathbf{m}=[\mathbf{l}]_{\times} \mathbf{m}=\left[\begin{array}{ccc}
0 & -1 & -1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]\left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right)=\left(\begin{array}{c}
-2 \\
-1 \\
-1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{l}=\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) \quad \mathrm{m}=\left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right) \\
& \mathrm{x}=\mathrm{l} \times \mathrm{m}=\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
0 & -1 & 1 \\
-1 & 0 & 2
\end{array}\right|=\left(\begin{array}{c}
-2 \\
-1 \\
-1
\end{array}\right)
\end{aligned}
$$

which is the point $(2,1)$

Algebraic representation of epipolar geometry

We know that the epipolar geometry defines a mapping

- the map ony depends on the cameras $\mathrm{P}, \mathrm{P}^{\prime}$ (not on structure)
- it will be shown that the map is linear and can be written as $\mathbf{1}^{\prime}=\mathrm{Fx}$, where F is a 3×3 matrix called the fundamental matrix

Derivation of the algebraic expression $\mathrm{l}^{\prime}=\mathrm{Fx}$

Outline

Step 1: for a point x in the first image back project a ray with camera P

Step 2: choose two points on the ray and project into the second image with camera P^{\prime}

Step 3: compute the line through the two image points using the relation $I^{\prime}=\mathbf{p} \times \mathbf{q}$

choose camera matrices

- first camera $\quad P=K[I \mid O]$
world coordinate frame aligned with first camera
- second camera

Step 1: for a point x in the first image back project a ray with camera $P=K[I \mid 0]$

A point \mathbf{x} back projects to a ray

$$
\left(\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right)=\mathrm{zK}^{-1}\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\mathrm{zK}^{-1} \mathrm{x}
$$

where \mathbf{Z} is the point's depth, since

$$
\mathrm{X}(\mathrm{z})=\binom{\mathrm{ZK}^{-1} \mathrm{x}}{1}
$$

satisfies

$$
\operatorname{PX}(z)=K[I \mid 0] X(z)=x
$$

Step 2: choose two points on the ray and project into the second image with camera P^{\prime}
Consider two points on the ray $\mathbf{X}(z)=\binom{\mathrm{ZK}^{-1} \mathrm{x}}{1}^{\stackrel{C}{C}}$

- $\mathbf{Z}=0$ is the camera centre $\binom{0}{1}$
- $\mathbf{Z}=\infty$ is the point at infinity $\binom{\mathrm{K}^{-1} \mathbf{x}}{0}$

Project these two points into the second view
$\mathrm{P}^{\prime}\binom{\mathbf{0}}{1}=\mathrm{K}^{\prime}[\mathrm{R} \mid \mathrm{t}]\binom{\mathbf{0}}{1}=\mathrm{K}^{\prime} \mathbf{t} \quad \quad \mathrm{P}^{\prime}\binom{\mathrm{K}^{-1} \mathbf{x}}{0}=\mathrm{K}^{\prime}[\mathrm{R} \mid \mathbf{t}]\binom{\mathrm{K}^{-1} \mathbf{x}}{0}=\mathrm{K}^{\prime} \mathrm{RK}^{-1} \mathbf{x}$

Step 3: compute the line through the two image points using the relation $\mathbf{I}^{\prime}=\mathbf{p} \times \mathbf{q}$

Compute the line through the points $\quad \mathbf{I}^{\prime}=\left(\mathrm{K}^{\prime} \mathrm{t}\right) \times\left(\mathrm{K}^{\prime} \mathrm{RK}^{-1} \mathbf{x}\right)$
Using the identity $(M \mathbf{a}) \times(\mathrm{Mb})=\mathrm{M}^{-\top}(\mathbf{a} \times \mathbf{b})$ where $\mathrm{M}^{-\top}=\left(\mathrm{M}^{-1}\right)^{\top}=\left(\mathrm{M}^{\top}\right)^{-1}$

$$
\mathrm{l}^{\prime}=\mathrm{K}^{\prime-\top}\left(\mathrm{t} \times\left(\mathrm{RK}^{-1} \mathbf{x}\right)\right)=\underbrace{\mathrm{K}^{\prime-\mathrm{T}}[\mathrm{t}]_{\times \mathrm{RK}^{-1}}}_{\mathrm{F}} \mathbf{x}
$$

$$
\mathbf{l}^{\prime}=\mathrm{F} \mathbf{x} \quad \mathrm{~F}=\mathrm{K}^{\prime-\mathrm{T}}[\mathbf{t}]_{\times} \mathrm{RK}^{-1}
$$

Points \mathbf{x} and \mathbf{x}^{\prime} correspond $\left(\mathbf{x} \leftrightarrow \mathbf{x}^{\prime}\right)$ then $\mathbf{x}^{\prime \top} \mathbf{l}^{\prime}=0$

$$
\mathbf{x}^{\prime \top} \mathbf{F x}=0
$$

Example I: compute the fundamental matrix for a parallel camera stereo rig

$$
\begin{aligned}
& \mathrm{P}=\mathrm{K}[\mathrm{I} \mid \mathbf{0}] \quad \mathrm{P}^{\prime}=\mathrm{K}^{\prime}[\mathrm{R} \mid \mathbf{t}] \\
& \mathrm{K}=\mathrm{K}^{\prime}=\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right] \quad \mathrm{R}=\mathrm{I} \quad \mathrm{t}=\left(\begin{array}{c}
t_{x} \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

$$
\mathrm{F}=\mathrm{K}^{\prime-\mathrm{T}}[\mathbf{t}]_{\times} \mathrm{RK}^{-1}
$$

$$
=\left[\begin{array}{ccc}
1 / f & 0 & 0 \\
0 & 1 / f & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -t_{x} \\
0 & t_{x} & 0
\end{array}\right]\left[\begin{array}{ccc}
1 / f & 0 & 0 \\
0 & 1 / f & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]
$$

$$
\mathbf{x}^{\prime \top} \mathbf{F} \mathbf{x}=\left(\begin{array}{ll}
x^{\prime} & y^{\prime}
\end{array}\right)\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=0
$$

- reduces to $y=y^{\prime}$, i.e. raster correspondence (horizontal scan-lines)

F is a rank 2 matrix

The epipole e is the null-space vector (kernel) of F (exercise), i.e. $\mathrm{Fe}=0$

In this case

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=0
$$

so that

$$
e=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Geometric interpretation ?

Stereo correspondence algorithms

Problem statement

Given: two images and their associated cameras compute corresponding image points.

Algorithms may be classified into two types:

1. Dense: compute a correspondence at every pixel
2. Sparse: compute correspondences only for features

The methods may be top down or bottom up

Bottom up matching

Top down matching

1. Group model (house, windows, etc) independently in each image
2. Match points (vertices) between images

- epipolar geometry reduces the correspondence search from 2D
to a 1D search on corresponding epipolar lines

-1D correspondence problem

Normalized Cross Correlation

Cross-correlation of neighbourhood regions

regions A, B, write as vectors \mathbf{a}, \mathbf{b}
translate so that mean is zero
$\mathrm{a} \rightarrow \mathrm{a}-\langle\mathbf{a}\rangle, \mathrm{b} \rightarrow \mathrm{b}-\langle\mathrm{b}\rangle$
cross correlation $=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$
Invariant to $I \rightarrow \alpha I+\beta$ (exercise)

Why is cross-correlation such a poor measure in the second case?

1. The neighbourhood region does not have a "distinctive" spatial intensity distribution
2. Foreshortening effects

fronto-parallel surface imaged length the same

slanting surface imaged lengths differ

Sketch of a dense correspondence algorithm

For each pixel in the left image

- compute the neighbourhood cross correlation along the corresponding epipolar line in the right image
- the corresponding pixel is the one with the highest cross correlation

Parameters

- size (scale) of neighbourhood
- search disparity

Other constraints

- uniqueness
- ordering
- smoothness of disparity field

Applicability

- textured scene, largely fronto-parallel

Example dense correspondence algorithm

left image

right image

3D reconstruction

right image
 intensity $=$ depth

Rectification continued

Convert converging cameras to parallel camera geometry by an image mapping

$$
\mathrm{K}=\mathrm{K}^{\prime}=\left[\begin{array}{ccc}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right] \quad \mathrm{R}=\mathrm{I} \quad \mathrm{t}=\left(\begin{array}{c}
t_{x} \\
0 \\
0
\end{array}\right)
$$

Then, $y^{\prime}=y$, and the disparity $d=x^{\prime}-x=\frac{f t_{x}}{Z}$

Image mapping is a 2D homography (projective transformation)

$$
H=K R K^{-1} \quad \text { (exercise) }
$$

Derivation

$$
\begin{aligned}
\frac{x}{f} & =\frac{X}{Z} \quad \frac{x^{\prime}}{f}=\frac{X+t_{x}}{Z} \\
\frac{x^{\prime}}{f} & =\frac{x}{f}+\frac{t_{x}}{Z}
\end{aligned}
$$

Note

- image movement (disparity) is inversely proportional to depth Z as $z \rightarrow \infty, d \rightarrow 0$
- depth is inversely proportional to disparity

Example

original stereo pair

rectified stereo pair

2. Linear triangulation (algebraic solution)

Use the equations $\mathrm{x}=\mathrm{PX}$ and $\mathrm{x}^{\prime}=\mathrm{P}^{\prime} \mathbf{X}$ to solve for \mathbf{X}
For the first camera:

$$
\mathbf{P}=\left[\begin{array}{l}
p_{11} p_{12} p_{13} p_{14} \\
p_{21} p_{22} p_{23} p_{24} \\
p_{31} p_{32} p_{33} p_{34}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{p}^{1 \top} \\
\mathbf{p}^{2 \top} \\
\mathbf{p}^{3 \top}
\end{array}\right]
$$

where $\mathrm{p}^{i \top}$ are the rows of P

- eliminate unknown scale in $\lambda \mathrm{x}=\mathrm{PX}$ by forming a cross product $\mathrm{x} \times(\mathrm{PX})=\mathbf{0}$

$$
\begin{aligned}
x\left(\mathbf{p}^{3 \top} \mathbf{X}\right)-\left(\mathbf{p}^{1 \top} \mathbf{X}\right) & =0 \\
y\left(\mathbf{p}^{3 \top} \mathbf{X}\right)-\left(\mathbf{p}^{\top} \mathbf{X}\right) & =0 \\
x\left(\mathbf{p}^{\top} \mathbf{X}\right)-y\left(\mathbf{p}^{1 \top} \mathbf{X}\right) & =0
\end{aligned}
$$

- rearrange as (first two equations only)

$$
\left[\begin{array}{l}
x \mathbf{p}^{3 \top}-\mathbf{p}^{1 \top} \\
y \mathbf{p}^{3 \top}-\mathbf{p}^{2 \top}
\end{array}\right] \mathbf{X}=\mathbf{0}
$$

Similarly for the second camera:

$$
\left[\begin{array}{l}
x^{\prime} \mathbf{p}^{\prime 3 \top}-\mathbf{p}^{\prime 1 \top} \\
y^{\prime} \mathbf{p}^{\prime 3 \top}-\mathbf{p}^{\prime 2 \top}
\end{array}\right] \mathbf{X}=\mathbf{0}
$$

Collecting together gives

$$
A X=0
$$

where A is the 4×4 matrix

$$
\mathbf{A}=\left[\begin{array}{c}
x \mathbf{p}^{3 \top}-\mathbf{p}^{1 \top} \\
y \mathbf{p}^{3 \top}-\mathbf{p}^{2 \top} \\
x^{\prime} \mathbf{p}^{\prime 3 T}-\mathbf{p}^{\prime 1 \top} \\
y^{\prime} \mathbf{p}^{\prime 3 T}-\mathbf{p}^{\prime 2 T}
\end{array}\right]
$$

from which X can be solved up to scale.

Problem: does not minimize anything meaningful
Advantage: extends to more than two views

3. Minimizing a geometric/statistical error

The idea is to estimate a 3D point $\widehat{\mathrm{X}}$ which exactly satisfies the supplied camera geometry, so it projects as

$$
\widehat{\mathrm{x}}=\mathrm{P} \widehat{\mathrm{X}} \quad \hat{\mathrm{x}}^{\prime}=\mathrm{P}^{\prime} \hat{\mathrm{X}}
$$

and the aim is to estimate $\widehat{\mathrm{X}}$ from the image measurements x and x^{\prime}.

$$
\min _{\widehat{\mathbf{X}}} \mathcal{C}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=d(\mathbf{x}, \hat{\mathbf{x}})^{2}+d\left(\mathbf{x}^{\prime}, \hat{\mathbf{x}}^{\prime}\right)^{2}
$$

where $d(*, *)$ is the Euclidean distance between the points.

- It can be shown that if the measurement noise is Gaussian mean zero, $\sim N\left(0, \sigma^{2}\right)$, then minimizing geometric error is the Maximum Likelihood Estimate of X
- The minimization appears to be over three parameters (the position X), but the problem can be reduced to a minimization over one parameter

Different formulation of the problem

The minimization problem may be formulated differently:

- Minimize

$$
d(\mathbf{x}, \mathbf{l})^{2}+d\left(\mathbf{x}^{\prime}, \mathbf{l}^{\prime}\right)^{2}
$$

-1 and l^{\prime} range over all choices of corresponding epipolar lines $\bullet \hat{\mathbf{x}}$ is the closest point on the line \mathbf{l} to \mathbf{x}.

- Same for $\hat{\mathbf{x}}^{\prime}$.

Minimization method

- Parametrize the pencil of epipolar lines in the first image by t, such that the epipolar line is $\mathbf{l}(t)$
- Using F compute the corresponding epipolar line in the second image $\mathbf{I}^{\prime}(t)$
- Express the distance function $d(\mathbf{x}, \mathbf{l})^{2}+d\left(\mathbf{x}^{\prime}, \mathbf{l}^{\prime}\right)^{2}$ explicitly as a function of t
- Find the value of t that minimizes the distance function
- Solution is a $6^{\text {th }}$ degree polynomial in t

