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Overview

• Lecture 1: Stereo Reconstruction I: epipolar geometry, 
fundamental matrix.

• Lecture 2: Stereo Reconstruction II: correspondence algorithms, 
triangulation.

• Lecture 3: Structure and Motion: ambiguities, computing the 
fundamental matrix, recovering ego-motion, applications. 

• Lecture 4: Object detection: the adaBoost algorithm for face 
detection.  

Further reading (www addresses) and the lecture notes are 

on http://www.robots.ox.ac.uk/~az/lectures
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Scenarios

The two images can arise from

• A stereo rig consisting of two cameras

• the two images are acquired simultaneously

or 

• A single moving camera (static scene)

• the two images are acquired sequentially

The two scenarios are geometrically equivalent

Stereo head

Camera on a mobile vehicle 

The objective 

Given two images of a scene acquired by known cameras compute the 

3D position of the scene (structure recovery)

Basic principle: triangulate from corresponding  image points

• Determine 3D  point at intersection of two back-projected rays

Corresponding points are images of the same scene point

Triangulation

C C /

The back-projected points generate rays which intersect at the

3D scene point



An algorithm for stereo reconstruction

1. For each point in the first image determine the 

corresponding point in the second image

(this is a search problem)

2. For each pair of matched points determine the 3D 

point by triangulation

(this is an estimation problem)

The correspondence problem

Given a point x in one image find the corresponding point in the other 

image

This appears to be a 2D search problem, but it is reduced to a 1D search 

by the epipolar constraint

1. Epipolar geometry

• the geometry of two cameras

• reduces the correspondence problem to a line search

2. Stereo correspondence algorithms

3. Triangulation

Outline

Notation
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The two cameras are P and P
/
, and a 3D point X is imaged as 

for equations involving homogeneous quantities ‘=’ means ‘equal up to scale’
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Epipolar geometry

Epipolar geometry

Given an image point in one view, where is the corresponding point 

in the other view?

epipolar line

?

baseline

• A point in one view  “generates” an epipolar line in the other view

• The corresponding point lies on this line

epipole C /C

Epipolar line

Epipolar constraint

• Reduces correspondence problem to 1D search along an 

epipolar line

Epipolar geometry continued

Epipolar geometry is a consequence of the coplanarity of the camera 

centres and scene point

x x /

X

C C /

The camera centres, corresponding points and scene point lie 

in a single plane, known as the epipolar plane



Nomenclature

• The epipolar line l
/

is the image of the ray through x

• The epipole e is the point of intersection of the line joining the camera centres 

with the image plane

this line is the baseline for a stereo rig, and

the translation vector for a moving camera

• The epipole is the image of the centre of the other camera: e = PC/ ,  e/ = P/C

x
x /

X

C C /

e

left epipolar line

right epipolar line

e
/

l
/

The epipolar pencil

e e /

baseline

X

As the position of the 3D point X varies, the epipolar planes “rotate” about 

the baseline. This family of planes is known as an epipolar pencil. All 

epipolar lines intersect at the epipole.

(a pencil is a one parameter family)

Epipolar geometry example I: parallel cameras

Epipolar geometry depends only on the relative pose (position and 

orientation) and internal parameters of the two cameras, i.e. the position of 

the camera centres and image planes. It does not depend on the scene 

structure (3D points external to the camera).

Epipolar geometry example II: converging cameras

Note, epipolar lines are in general not parallel

e e /



Homogeneous notation for lines

• The line l through the two points p and q is  l = p x q

Example: compute the point of intersection of the two lines l and m       

in the figure below

Proof

y

x
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• The intersection of two lines l and m is the point x = l x m

l

m

which is the point (2,1)

Matrix representation of the vector cross product

Example: compute the cross product of l and m



Algebraic representation of epipolar geometry

We know that the epipolar geometry defines a mapping

x                       l
/

point in first 

image
epipolar line in 

second image

P

Derivation of the algebraic expression

Outline

Step 1: for a point x in the first image 

back project a ray with camera P

Step 2: choose two points on the ray and 

project into the second image with camera P
/

Step 3: compute the line through the two 

image points using the relation l
/
= p x q

P
/

• choose camera matrices

internal 

calibration
rotation translation

from world to camera 

coordinate frame

• first camera

world coordinate frame aligned with first camera

• second camera

Step 1: for a point x in the first image 

back project a ray with camera
P

A point x back projects to a ray

where Z is the point’s depth, since

satisfies



Step 2: choose two points on the ray and 

project into the second image with camera P
/

P
/

Consider two points on the ray

• Z = 0 is the camera centre

• Z = is the point at infinity

Project these two points into the second view

Using the identity

Compute the line through the points

F

F is the fundamental matrix

Step 3: compute the line through the two 

image points using the relation l
/
= p x q

Example I: compute the fundamental matrix for a parallel camera stereo rig

• reduces to y = y/ , i.e. raster correspondence (horizontal scan-lines)
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Geometric interpretation ?



Example II: compute F for a forward translating camera
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first image second image

Summary: Properties of the Fundamental matrix



Stereo correspondence 

algorithms

Problem statement

Given: two images and their associated cameras compute

corresponding image points.

Algorithms may be classified into two types:

1. Dense: compute a correspondence at every pixel

2. Sparse: compute correspondences only for features

The methods may be top down or bottom up

Top down matching 

1. Group model (house, windows, etc) independently in 

each image

2. Match points (vertices) between images

Bottom up matching

• epipolar geometry reduces the correspondence search from 2D 

to a 1D search on corresponding epipolar lines

• 1D correspondence problem

b/

a/

b
ca
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cross-eye viewing random dot stereogram

Correspondence algorithms 

Algorithms may be top down or bottom up – random dot stereograms

are an existence proof that bottom up algorithms are possible

From here on only consider bottom up algorithms

Algorithms may be classified into two types:

1. Dense: compute a correspondence at every pixel

2. Sparse: compute correspondences only for features

Dense correspondence algorithm

Search problem (geometric constraint): for each point in the left image, the 

corresponding point in the right image lies on the epipolar line (1D ambiguity)

Disambiguating assumption (photometric constraint): the intensity 

neighbourhood of corresponding points are similar across images

Measure similarity of neighbourhood intensity by cross-correlation 

Parallel camera example – epipolar lines are corresponding rasters

epipolar

line

Intensity profiles

• Clear correspondence between intensities, but also noise and ambiguity



region A

Normalized Cross Correlation

region B

vector a vector b

write regions as vectors

a

b

Cross-correlation of neighbourhood regions

epipolar

line

translate so that mean is zero 

(exercise)
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Why is cross-correlation such a poor measure in the second case?

1. The neighbourhood region does not have a “distinctive” spatial intensity 

distribution

2. Foreshortening effects

fronto-parallel surface

imaged length the same

slanting surface

imaged lengths differ

Sketch of a dense correspondence algorithm

For each pixel in the left image

• compute the neighbourhood cross correlation along the 
corresponding epipolar line in the right image

• the corresponding pixel is the one with the highest cross 
correlation

Parameters

• size (scale) of neighbourhood

• search disparity 

Other constraints

• uniqueness

• ordering

• smoothness of disparity field

Applicability

• textured scene, largely fronto-parallel

Example dense correspondence algorithm

left image right image

right image depth map

3D reconstruction

intensity = depth



Views of a texture mapped 3D triangulation

range map

Pentagon example

left image right image

Rectification

e e /

For converging cameras

• epipolar lines are not parallel

Project images onto plane parallel to baseline

epipolar plane



Rectification continued

Convert converging cameras to parallel camera 

geometry by an image mapping

Image mapping is a 2D homography (projective transformation)

(exercise)

Example
original stereo pair

rectified stereo pair

Note

• image movement (disparity) is inversely proportional to depth Z

• depth is inversely proportional to disparity

Example: depth and disparity for a parallel camera stereo rig

Then, y/ = y, and the disparity

Derivation
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Triangulation

Problem statement

Given: corresponding measured (i.e. noisy) points x and x
/
, and 

cameras (exact) P and P
/
, compute the 3D point X

Problem: in the presence of noise, back projected rays do not intersect

C C /

rays are skew in space

Measured points do not lie on corresponding epipolar lines

x x /

1. Vector solution

C C /

Compute the mid-point of the shortest line between the 

two rays



2. Linear triangulation (algebraic solution)

Problem: does not minimize anything meaningful

Advantage: extends to more than two views

3. Minimizing a geometric/statistical error

• It can be shown that if the measurement noise is 

Gaussian mean zero,                  , then minimizing 

geometric error is the Maximum Likelihood Estimate of X

• The minimization appears to be over three parameters 

(the position X), but the problem can be reduced to a 

minimization over one parameter



Different formulation of the problem

Minimization method

• Parametrize the pencil of epipolar lines in the first image by t, 

such that the epipolar line is l(t)

• Using F compute the corresponding epipolar line in the second 

image l/ (t)

• Express the distance function                                 explicitly as a 

function of t

• Find the value of t that minimizes the distance function

• Solution is a 6th degree polynomial in t


