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Reconstruct
» Scene geometry
« Camera motion

The story so far ... stereo reconstruction from 2 views

Given cameras P=k1|0 P =K[R|t]
« Epipolar geometry: compute fundamental matrix F =K'~ "[t].RK’

« Correspondence search: 1D search for corresponding
points x & x' along epipolar line I' = F x

« Triangulation: compute 3D point X from x & x', and P, P/

Now, structure and motion ...

Example

image sequence

cameras and points

Structure and Motion: Problem statement

Given 2 (or more) images of a scene, compute the scene
structure and the camera motion

n\\‘

« Assume internal calibration (K, K') is known
+ Assume scene is rigid
« Start with 2 views only

* NB epipolar geometry is not known




Outline Why use interest points ?

* Image point motion

« Computing the fundamental matrix Compute points to avoid
+ 8-point algorithm the aperture problem

¢ automation
« motion from the fundamental matrix 2D feature

* More than two views
1D feature (edge)

* matching
+ estimation
uniform
* Applications
The aperture problem interest points computed for each frame

» Harris corner detector

Only the component of motion perpendicular to the line can be determined
from local image measurements




The geometric motion problem

Given image point correspondences, x; © x;,determine R and t

Rotate and translate camera until stars of rays intersect

Ouitline of structure and motion computation

1. Compute the fundamental matrix F from point
correspondences x; © x/

2. Compute the cameras (motion) from the fundamental
matrix (recall F =K'~ T[t],RK").
Obtain
P=K[I]|o], P =K[R|t]

3. Compute the 3D structure X; from the cameras P, P’ and
point correspondences x; © x/ (triangulation)

What can be computed from point correspondences?

Suppose we have computed F = K’*T[t]XRK*1 can the motion be computed?
F is a homogeneous matrix, so

F=K"T[t]xRK~1 = K~ T[At]xRK~1

i.e. the translation can only be determined up to scale. This is a consequence of
the depth / speed ambiguity: only the ratio of t and Z can be computed since if

t— At and Z — \7
the images are unchanged.
+ alarge motion of a distant object, and
+ a small motion of a nearby object
are indistinguishable (from point motion alone)

Summary: the rotation R (3 dof) can be determined completely, but only the
translation direction (2 dof) can be determined, not its magnitude

How many point correspondences are required ?

« for n points there are 3n unknowns (the 3D position of each point)
« for 2 views there are 5 unknowns (that are recoverable)

+ each point correspondence gives 4 measurements

« for n points expect a solution if 4n = (3n +5),i.e.n =5

« we will give solutions for n = 7 and n = 8 correspondences




Computing the
fundamental matrix

Af

Problem statement

Given: ncorresponding points {xi <+ xj,i=1,...,n}
compute the fundamental matrix F such that

x;TF}q:O 1<:1<n
Solution

Each point correspondence x; <> x| generates one constraint on F

fifa fa T
(Ziyi ) | fufs fo| | wi | =0
fefs fo \ 1

which may be written

dvfi+a'yfota fa+y' e faty'yfs+y fota frtyfatfo =0

@'z, 'y, 2, vz, Yy, ¥, = oy, 1) fs | =0

For n points

a A'is an n x 9 measurement matrix,
ahey @iy @) Yiwr viye vh @ oy 1 fa

Jrompe s am e 2 e and fis the fundamental matrix
Than Thyn T YnTn YnYn Yn Tn yn 1 Je written as a 9-vector

+ For 8 points, A is an 8 x 9 matrix and f can be computed as the
null-vector of A, i.e. fis determined up to scale

+ Note, this solution (and those following) does not require (K, K')




Example: compute + from 8 point correspondences

Images from a parallel camera stereo rig — epipolar lines y = y/
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°x/I

0X3
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just consider first three points (;,,1 > ( " )
y1 i

)= 6) - ()

whay aly, x yle, ylye ybowoy 1
2 2 2 1 1 1 1 1 1
A= 8 0 4 0 O O 2 01
0 0 0 2 1 0O -2 0 1
wha; why; @ vl vy vhox oy 1
2 2 2 1 1 1 1 1 1
A= 8 0 4 0 O 0 2 01
0 0 0 2 1 0 01

f:(ooooo-101o)T
satisfies Af =0
write f in matrix form
0O 0 O
F=|0 0 -1
01 O

The “8-point” algorithm — Least squares solution

Given n corresponding points (n is typically hundreds)
with noise on their measured positions

For n > 8 point correspondences, A is a n X 9 matrix,

e Ay @ vim Yy v omowm 1
: : : : : : : P f=0
oy xhyn x, yhan Yhyn Y, Tm yn 1
and in general there will not be an exact solution to
Af = 0.

A (linear) solution which minimises |[|Af||, subject to
[If]] = 1 is obtained from the eigenvector with least
eigenvalue of ATA.

Solution for 7 points

1.Form the 7 x 9 set of equations Af =0
2.The system has a 2-dimensional solution set
3.General solution (use SVD) has the form

f = My + pfy
4.In matrix terms
F = \Fy + uFy

5.Condition det F = 0 gives cubic equation in A and p
6. Either one or three real solutions for ratio A : u




A note on minimizing residuals

We have seen two examples of needing to minimize
residuals of the form || A x || over X

1. In computing the fundamental matrix from point

correspondences over two views
For n > 8 point correspondences, A is a n x 9 matrix,
dier 2y ) Yiw Yy v w1 w1
: : : : : - f=0
hen Tyn T, YhTw ViU Y Tw Ya 1
2. Intriangulating the 3D position of a point from its

image in two or more views
3T 1T

x=PX x'=PX mp3T - pzT
yp

? - P _
2p3T — 1T X=0
y/p/3T _ p/2T

For m views A is a 2m x 4 matrix

We want to avoid the trivial solution x = 0, so add the
constraint that || x || = 1

min ||Ax|| subject to |[|x||=1

For a m x n matrix (with m > n) the vector x that minimizes ||
A X || subjectto || x || = 1 is given by the eigenvector of AT A
corresponding to the least eigenvalue

Proof

Write the residuals as a m-vector r = Ax
Then |r]2=rTr=x"ATAx

Write M = ATA. This is a n x n (i.e. square)
positive semi-definite symmetric matrix:

e The eigenvalues ); are real, and the eigen-
vectors e; are orthonormal, e;.e; = d;;

e Let x = e; then e;"Me; = );, and since
xTMx > 0 V x it follows that A\; > 0

Eigenvector decomposition
A1

e e € e )\2
M= :1 :2 :3 o :n A3

An
where 0 < A\ < Ao < ... < A

Then

xTMx = A (x.€,)% 4 Ao(x.€2)% ... + Mn(x.€n)?

This is minimized if x = ejy.

e1
€2
€3

=
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Automatic Computation
of the fundamental matrix

Given Image pair

Find The fundamental matrix F and correspondences x; ++ x/.

e Compute image points
e Compute correspondences
e Compute epipolar geometry

Step 1: interest points

Harris corner detector

100’s of points per image

Step 2a: match points — proximity

* proximity - search within disparity window




Step 2b: match points — cross-correlate

Robust line estimation - RANSAC

Fit a line to 2D data containing outliers

* cross-correlate on intensity neighbourhoods

Correlation matching results

» Many wrong matches (10-50%), but enough to compute F

There are two problems
1. aline fit which minimizes perpendicular distance

2. aclassification into inliers (valid points) and outliers
Solution: use robust statistical estimation algorithm RANSAC

(RANdom Sample Consensus) [Fishler & Bolles, 1981]

RANSAC robust line estimation

Repeat
1. Select random sample of 2 points
2. Compute the line through these points
3. Measure support (number of points within threshold
distance of the line)
Choose the line with the largest number of inliers

» Compute least squares fit of line to inliers (regression)




Algorithm summary — RANSAC robust F estimation

Repeat
1. Select random sample of 7 correspondences
2. Compute F (1 or 3 solutions)
3. Measure support (number of inliers within threshold
distance of epipolar line)

Choose the F with the largest number of inliers

Correspondences consistent with epipolar geometry

e Use RANSAC robust estimation algorithm

« Obtain correspondences x; < x; and F

Computed epipolar geometry




Determining cameras
from the fundamental
matrix

Decomposing the fundamental matrix

F=K"T[t| xRk

Form the Essential matrix E = [t]xR = K’ FK

1.

Compute t as left null-vector of E, i.e. ETt =10
This determines t up to scale.

Compute R from E (see below)
There are two solutions Ry and Ro.

Set P =KJ[I | 0] for the first camera

The four solutions for the second camera are

PP=K[R |pt] P=K[R|—pt] p>0
P'=K[Ro | ut] P =K[Ro|—pt]

The four camera solutions

£ s

A B

=
»

(a) (b)

7@

% B B’
(c) (d)

The 3D point is only in front of both cameras in one case

>

Computing the rotation matrix from the Essential matrix (non-examinable)

» Compute the SVD of E = U diag(1,1,0)v’
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+Solutionsare Ry =UWVT Ry, =UW'V'T




Structure and Motion
for more than 2 views

What is gained by having more than 2 views?

1. The two view ambiguities do not get worse

there is an overall scale ambiguity

2. Matching:

matches can be verified

3. Estimation:

accuracy increased by using more measurements

Notation for three or more views

For 3 views the cameras are P, P’ and P”, and a 3D point is imaged as

x=PX x=PX x'=P'X

For m views, a point Xj is imaged in the “i” th view as

i _ply.
XJ_PX]

Point correspondence over 3 views

Given: the cameras P, P’ and P”, and matching points x and x’
Find: the matching point in the third view

Algorithm:
- compute the 3D point from x and X’ and project it into the third view
« the matching point coincides with the projected point




Problem statement: structure and motion Application: Augmented reality

Given: n matching image points xij over m views original sequence

Find: the cameras p! and the 3D points Xj such that xij -p! Xj

. ; ; 2
min 3 > od (xll, PrLXj)
P' X, jepoints iEviews

number of parameters
« for each camera there are 6 parameters

« for each 3D point there are 3 parameters

a total of 6 m + 3 n parameters must be estimated

Algorithm for structure and motion Augmentation
Building block is computing correspondences {x; <> X}}
images and cameras P,P’ for an image pair via F
1 oo 1
° P,Xj ) P
|
y P 5 Algorithm
oo — P . L .
* Px; ™ »  Compute interest points in each image
| X . +  Compute point correspondences
34 2% [ P 3 J between consecutive image pairs
L)
o P x; ) »  Extend and verify correspondences
| and cameras over image triplets
4 .Pl’x3' » P4 «  Extend correspondences and
° o M cameras over all images
I . Optimize over {P, X;}




