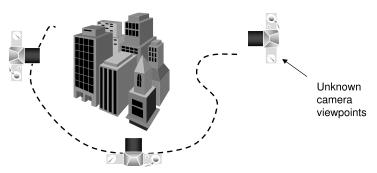
Structure and Motion

Prof A Zisserman Michaelmas 2003



Reconstruct

- Scene geometry
- Camera motion

The story so far ... stereo reconstruction from 2 views

Given cameras $P = K[I \mid 0]$ $P' = K'[R \mid t]$.

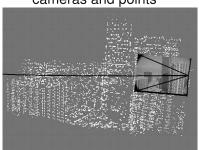
- Epipolar geometry: compute fundamental matrix $F = K'^{-T}[t] \times RK^{-1}$
- Correspondence search: 1D search for corresponding points x ↔ x' along epipolar line l' = F x
- Triangulation: compute 3D point X from $x \leftrightarrow x'$, and P, P'

Now, structure and motion ...

Example

image sequence

cameras and points



Structure and Motion: Problem statement

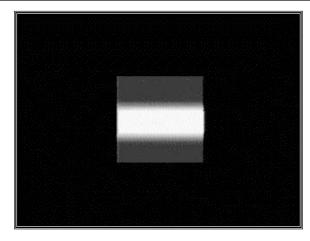
Given 2 (or more) images of a scene, compute the scene structure and the camera motion

- Assume internal calibration (K, K') is known
- Assume scene is rigid
- Start with 2 views only
- NB epipolar geometry is not known

Outline

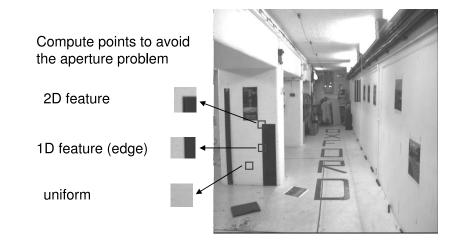
- Image point motion
- Computing the fundamental matrix
 - 8-point algorithm
 - automation
 - motion from the fundamental matrix
- More than two views
 - matching
 - estimation
- Applications

The aperture problem



Only the component of motion perpendicular to the line can be determined from local image measurements

Why use interest points?

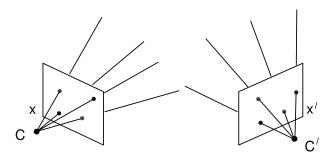


interest points computed for each frame

• Harris corner detector

The geometric motion problem

Given image point correspondences, $x_i \leftrightarrow x_i$, determine R and t



Rotate and translate camera until stars of rays intersect

Outline of structure and motion computation

- 1. Compute the fundamental matrix F from point correspondences $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$
- 2. Compute the cameras (motion) from the fundamental matrix (recall $F = K'^{-T}[t]_{\times}RK^{-1}$). Obtain

$$\mathbf{P} = \mathbf{K}[\mathbf{I} \mid \mathbf{0}], \ \mathbf{P}' = \mathbf{K}'[\mathbf{R} \mid \mathbf{t}]$$

3. Compute the 3D structure X_i from the cameras P, P' and point correspondences $x_i \leftrightarrow x_i'$ (triangulation)

What can be computed from point correspondences?

Suppose we have computed $F = K'^{-\top}[t]_{\times}RK^{-1}$ can the motion be computed? F is a homogeneous matrix, so

$$\mathbf{F} = \mathbf{K}'^{-\top}[\mathbf{t}]_{\times}\mathbf{R}\mathbf{K}^{-1} = \mathbf{K}'^{-\top}[\lambda\mathbf{t}]_{\times}\mathbf{R}\mathbf{K}^{-1}$$

i.e. the translation can only be determined up to scale. This is a consequence of the depth / speed ambiguity: only the ratio of t and Z can be computed since if

$$t \to \lambda t$$
 and $Z \to \lambda Z$

the images are unchanged.

- · a large motion of a distant object, and
- · a small motion of a nearby object

are indistinguishable (from point motion alone)

Summary: the rotation R (3 dof) can be determined completely, but only the translation direction (2 dof) can be determined, not its magnitude

How many point correspondences are required?

- for n points there are 3n unknowns (the 3D position of each point)
- for 2 views there are 5 unknowns (that are recoverable)
- each point correspondence gives 4 measurements
- for n points expect a solution if $4n \ge (3n + 5)$, i.e. $n \ge 5$
- we will give solutions for n = 7 and n = 8 correspondences

Computing the fundamental matrix

Problem statement

<u>Given:</u> n corresponding points $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i', i = 1, \dots, n\}$ compute the fundamental matrix F such that

$$\mathbf{x}_i'^{\mathsf{T}} \mathbf{F} \mathbf{x}_i = 0 \qquad 1 \le i \le n$$

Solution

Each point correspondence $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$ generates one constraint on F

$$(x_i' \ y_i' \ 1) \begin{bmatrix} f_1 \ f_2 \ f_3 \ f_4 \ f_5 \ f_6 \ f_7 \ f_8 \ f_9 \end{bmatrix} \begin{pmatrix} x_i \ y_i \ 1 \end{pmatrix} = 0$$

which may be written

$$x'xf_1+x'yf_2+x'f_3+y'xf_4+y'yf_5+y'f_6+xf_7+yf_8+f_9=0$$

$$(x'x, x'y, x', y'x, y'y, y', x, y, 1) \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \\ f_8 \\ f_9 \end{pmatrix} = 0$$

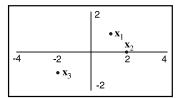
For n points

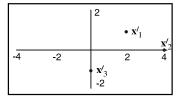
$$\text{Af} = \begin{bmatrix} x_1'x_1 & x_1'y_1 & x_1' & y_1'x_1 & y_1'y_1 & y_1 & x_1 & y_1 & 1 \\ \vdots & \vdots \\ x_n'x_n & x_n'y_n & x_n' & y_n'x_n & y_n'y_n & y_n' & x_n & y_n & 1 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \\ f_8 \\ f_9 \end{bmatrix}$$
 A is an n x 9 measurement matrix, and **f** is the fundamental matrix written as a 9-vector

- For 8 points, A is an 8 x 9 matrix and f can be computed as the null-vector of A, i.e. f is determined up to scale
- Note, this solution (and those following) does not require (K, K')

Example: compute F from 8 point correspondences

Images from a parallel camera stereo rig – epipolar lines y = y/





just consider first three points
$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$
 $\begin{pmatrix} x_1' \\ y_1' \end{pmatrix}$ $\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ $\begin{pmatrix} x_2' \\ y_2' \end{pmatrix}$ $\begin{pmatrix} x_3 \\ y_3 \end{pmatrix}$ $\begin{pmatrix} x_3' \\ y_3' \end{pmatrix}$ $\begin{pmatrix} x_1' \\ 1 \end{pmatrix}$ \leftrightarrow $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ \leftrightarrow $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$ $\begin{pmatrix} -2 \\ -1 \end{pmatrix}$ \leftrightarrow $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$

satisfies Af = 0

write f in matrix form

$$\mathbf{F} = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array} \right]$$

The "8-point" algorithm – Least squares solution

Given n corresponding points (n is typically hundreds) with noise on their measured positions

For n > 8 point correspondences, A is a $n \times 9$ matrix,

and in general there will not be an exact solution to $\mathbf{A}\mathbf{f}=\mathbf{0}.$

A (linear) solution which minimises $||\mathbf{A}\mathbf{f}||$, subject to $||\mathbf{f}||=1$ is obtained from the eigenvector with least eigenvalue of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$.

Solution for 7 points

- 1. Form the 7×9 set of equations $\mathbf{Af} = \mathbf{0}$
- 2. The system has a 2-dimensional solution set
- 3. General solution (use SVD) has the form

$$\mathbf{f} = \lambda \mathbf{f}_0 + \mu \mathbf{f}_1$$

4. In matrix terms

$$\mathtt{F} = \lambda \mathtt{F}_0 + \mu \mathtt{F}_1$$

- 5. Condition $\det \mathbf{F} = 0$ gives cubic equation in λ and μ
- 6. Either one or three real solutions for ratio λ : μ

A note on minimizing residuals

We have seen two examples of needing to minimize residuals of the form || A x || over x

1. In computing the fundamental matrix from point correspondences over two views

For n > 8 point correspondences, A is a $n \times 9$ matrix,

2. In triangulating the 3D position of a point from its image in two or more views

$$\mathbf{x} = P\mathbf{X} \qquad \mathbf{x}' = P'\mathbf{X} \qquad \begin{bmatrix} x\mathbf{p}^{\mathbf{3}\top} - \mathbf{p}^{\mathbf{1}\top} \\ y\mathbf{p}^{\mathbf{3}\top} - \mathbf{p}^{\mathbf{2}\top} \\ x'\mathbf{p}'^{\mathbf{3}\top} - \mathbf{p}'^{\mathbf{1}\top} \\ y'\mathbf{p}'^{\mathbf{3}\top} - \mathbf{p}'^{\mathbf{2}\top} \end{bmatrix} \mathbf{X} = \mathbf{0}$$

For m views A is a $2m \times 4$ matrix

We want to avoid the trivial solution $\mathbf{x} = \mathbf{0}$, so add the constraint that $||\mathbf{x}|| = 1$

$$\min_{\mathbf{x}} ||\mathbf{A}\mathbf{x}|| \text{ subject to } ||\mathbf{x}|| = 1$$

For a m x n matrix (with m > n) the vector \mathbf{x} that minimizes || A \mathbf{x} || subject to || \mathbf{x} || = 1 is given by the eigenvector of $\mathbf{A}^T \mathbf{A}$ corresponding to the least eigenvalue

Proof

Write the residuals as a m-vector $\mathbf{r} = A\mathbf{x}$

Then $||\mathbf{r}||^2 = \mathbf{r}^{\mathsf{T}}\mathbf{r} = \mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}$

Write $M = A^{T}A$. This is a $n \times n$ (i.e. square) positive semi-definite symmetric matrix:

- The eigenvalues λ_i are real, and the eigenvectors \mathbf{e}_i are orthonormal, $\mathbf{e}_i.\mathbf{e}_j = \delta_{ij}$
- Let $\mathbf{x} = \mathbf{e}_i$ then $\mathbf{e}_i^{\mathsf{T}} \mathbf{M} \mathbf{e}_i = \lambda_i$, and since $\mathbf{x}^{\mathsf{T}} \mathbf{M} \mathbf{x} > 0 \ \forall \ \mathbf{x}$ it follows that $\lambda_i > 0$

Eigenvector decomposition

$$\mathbf{M} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 & \dots & \mathbf{e}_n \\ \vdots & \vdots & \vdots & & \vdots \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \lambda_3 & & \\ & & & \lambda_n \end{bmatrix} \begin{bmatrix} \mathbf{e}_1^\top \dots \\ \mathbf{e}_2^\top \dots \\ \mathbf{e}_3^\top \dots \\ \vdots \\ \mathbf{e}_n^\top \dots \end{bmatrix} = \sum_i \lambda_i \mathbf{e}_i \mathbf{e}_i^\top$$
where $0 < \lambda_1 < \lambda_2 < \dots < \lambda_n$

Then

$$\mathbf{x}^{\top}\mathbf{M}\mathbf{x} = \lambda_1(\mathbf{x}.\mathbf{e}_i)^2 + \lambda_2(\mathbf{x}.\mathbf{e}_2)^2 \ldots + \lambda_n(\mathbf{x}.\mathbf{e}_n)^2$$

This is minimized if $x = e_1$.

Automatic Computation of the fundamental matrix

Given Image pair

<u>Find</u> The fundamental matrix F and correspondences $\mathbf{x}_i \leftrightarrow \mathbf{x}'_i$.

- Compute image points
- Compute correspondences
- Compute epipolar geometry

Step 1: interest points

Harris corner detector 100's of points per image

Step 2a: match points - proximity

• proximity - search within disparity window

Step 2b: match points - cross-correlate

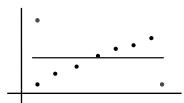
• cross-correlate on intensity neighbourhoods

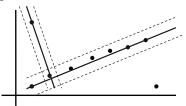
Correlation matching results

• Many wrong matches (10-50%), but enough to compute F

Robust line estimation - RANSAC

Fit a line to 2D data containing outliers





There are two problems

- 1. a line fit which minimizes perpendicular distance
- a classification into inliers (valid points) and outliers
 Solution: use robust statistical estimation algorithm RANSAC
 (RANdom Sample Consensus) [Fishler & Bolles, 1981]

RANSAC robust line estimation

Repeat

- 1. Select random sample of 2 points
- 2. Compute the line through these points
- 3. Measure support (number of points within threshold distance of the line)

Choose the line with the largest number of inliers

• Compute least squares fit of line to inliers (regression)

Algorithm summary – RANSAC robust F estimation

Repeat

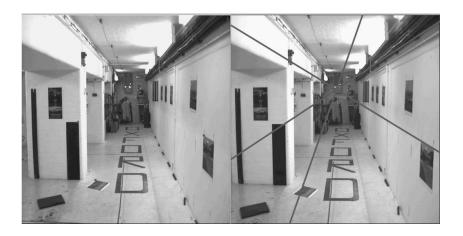
- 1. Select random sample of 7 correspondences
- 2. Compute F (1 or 3 solutions)
- 3. Measure support (number of inliers within threshold distance of epipolar line)

Choose the F with the largest number of inliers

Correspondences consistent with epipolar geometry

- Use RANSAC robust estimation algorithm
- ullet Obtain correspondences $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$ and \mathtt{F}

Computed epipolar geometry



Determining cameras from the fundamental matrix

Decomposing the fundamental matrix

$$\mathbf{F} = \mathbf{K}'^{-\top}[\mathbf{t}]_{\times}\mathbf{R}\mathbf{K}^{-1}$$

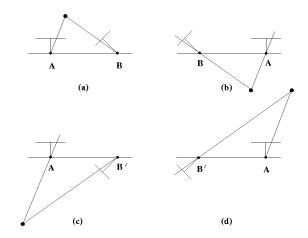
Form the Essential matrix $E = [t]_{\times}R = K'^{\top}FK$

- 1. Compute t as left null-vector of E, i.e. $\mathbf{E}^{\mathsf{T}}\mathbf{t} = \mathbf{0}$ This determines t up to scale.
- 2. Compute R from E (see below) There are two solutions R_1 and R_2 .
- 3. Set $P = K[I \mid 0]$ for the first camera

The four solutions for the second camera are

$$\begin{aligned} \mathbf{P}' &= \mathbf{K}'[\mathbf{R}_1 \mid \mu \mathbf{t}] & \quad \mathbf{P}' &= \mathbf{K}'[\mathbf{R}_1 \mid -\mu \mathbf{t}] & \quad \mu > 0 \\ \mathbf{P}' &= \mathbf{K}'[\mathbf{R}_2 \mid \mu \mathbf{t}] & \quad \mathbf{P}' &= \mathbf{K}'[\mathbf{R}_2 \mid -\mu \mathbf{t}] \end{aligned}$$

The four camera solutions



The 3D point is only in front of both cameras in one case

Computing the rotation matrix from the Essential matrix (non-examinable)

- Compute the SVD of $\mathtt{E} = \mathtt{U} \ \mathrm{diag}(1,1,0) \mathtt{V}^\top$
- Set $W = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- Solutions are $R_1 = UWV^T$ $R_2 = UW^TV^T$

Structure and Motion for more than 2 views

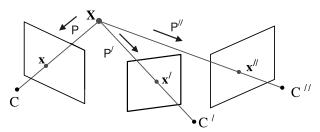
What is gained by having more than 2 views?

- 1. The two view ambiguities do not get worse
 - there is an overall scale ambiguity
- 2. Matching:
 - · matches can be verified
- 3. Estimation:
 - · accuracy increased by using more measurements

Notation for three or more views

For 3 views the cameras are P, P^{I} and P^{II} , and a 3D point is imaged as

$$\mathbf{x} = \mathsf{P}\mathbf{X}$$
 $\mathbf{x}' = \mathsf{P}'\mathbf{X}$ $\mathbf{x}'' = \mathsf{P}''\mathbf{X}$

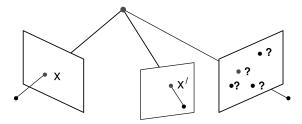


For m views, a point X_i is imaged in the "i" th view as

$$\mathbf{x}^{i}_{j} = \mathsf{P}^{i} \mathbf{X}_{j}$$

Point correspondence over 3 views

Given: the cameras P, P' and P'', and matching points x and x'Find: the matching point in the third view



Algorithm:

- compute the 3D point from x and x' and project it into the third view
- the matching point coincides with the projected point

Problem statement: structure and motion

Given: n matching image points $\boldsymbol{x}^{\boldsymbol{i}}_{\;\boldsymbol{i}}$ over m views

Find: the cameras \textbf{P}^i and the 3D points \boldsymbol{X}_j such that $\boldsymbol{x}^i_{\ j} = \textbf{P}^i \, \boldsymbol{X}_j$

$$\min_{\mathbf{P}^{i} \mathbf{X}_{j}} \sum_{j \in \text{points}} \sum_{i \in \text{views}} d\left(\mathbf{x}_{j}^{i}, \mathbf{P}^{i} \mathbf{X}_{j}\right)^{2}$$

number of parameters

- for each camera there are 6 parameters
- for each 3D point there are 3 parameters

a total of 6 m + 3 n parameters must be estimated

Algorithm for structure and motion

images

Building block is computing correspondences $\{x_j \leftrightarrow x_j'\}$ and cameras P, P' for an image pair via F

P1

Algorithm

Compute interest points in each image between consecutive image pairs

Extend and verify correspondences and cameras over image triplets

Extend correspondences and cameras over all images

Optimize over $\{P^i, X_j\}$

Application: Augmented reality

original sequence

Augmentation

