

Creation and Analysis of a Scenario Based Universal Sensory Driver Layer
with Real-time Fault Tolerant Properties

TaeHoon A. Choi, Michael C. Nechyba, Eric M. Schwartz, A. Antonio Arroyo

tae@mil.ufl.edu, nechyba@mil.ufl.edu, ems@mil.ufl.edu, arroyo@mil.ufl.edu

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611

Abstract

 Sensor fusion and sensor integration is becoming
an increasingly popular approach in dealing with
complex sensor systems in autonomous mobile robots
(AMR). However, the procedure for the sensor
integration and sensor fusion is a non-trivial process.
This paper presents a scenario based approach to sensor
fusion based on the Autonomous Evolution of sensory and
actuator Driver layers through Environmental
Constraints (AEDEC) [1]. Using the scenario based
approach, the programmer’s work of creating a sensory
driver will be eliminated by having the AMR learn the
driver on is own. In the process of creating each
scenario, sensor fusion is automatically implemented. If
sensors change or even if the sensor configuration
changes, the driver can be updated by having the AMR
relearn the driver over again. Due to the tabular
structure of the scenario based sensory drivers,
malfunctioning sensors can not only be detected, but the
driver can automatically adapt to the malfunctioning
sensor in real-time. Furthermore, different AMRs trained
using AEDEC architecture will have similar
interpretations of its environment. This is guaranteed by
having the AMR learn the driver in the same highly
structured training environment. The behavioral coding
is simplified by eliminating any reference to hardware
dependent parameters. Finally, the level of abstraction
and the consistency of the highly structured environment
will allow for code portability.

1 Introduction
 Sensors are a critical component of an AMR.
Sensors’ performance and the way sensors are utilized can
greatly affect the performance of an AMR. Many of the
current research has been centered on different
methodologies concerning analysis, optimization, and
procedure concerning sensor fusion. “Logical sensors”
presented by Henderson and Shilcrat [4, 5], COM-based
software architecture presented by Wang et al. [6],
Hierarchical Phase-Template Paradigm presented by Lou
and Lin, Object Oriented Programming [7, 8] are just
some of the research which have shown very promising
results. For more detailed background refer to Luo and
Kay [9], who presents an excellent survey of multisensor

integration and fusion. Each of the methodology listed
above require non-trivial human planning for
implementation.
 Traditionally, sensors are painstakingly
characterized and studied to find the proper thresholds
and use of the sensors. Although it is time consuming,
this method has worked well in many applications. The
problem arises when there are many sensors. In order to
guarantee the same performance for the new sensor, every
new sensor had to be characterized, since different
sensors can have different characteristics. The problems
are further compounded in the cases where the sensors are
being added to not just one AMR but multiple AMRs and,
even worse, multiple AMRs of different types. When
high precision sensors are used, the need for constant
characterization of sensors can be reduced. The problem
with this option is that the cost of the AMR increases.
 Even if high precision sensors are used, sensor’s
performance and characteristics are greatly effected by
how the sensor is physically implemented on an AMR.
For example, an infra-red proximity sensor’s performance
is greatly effected by the orientation of the sensor on the
AMR’s platform. The variations are caused by different
angles with respect to the environment and interference
from other physical parts of the AMR causing partial
reflections and partial blockage.
 Now imagine trying to create a sensory driver
layer for a complex sensor suite of an AMR. AMR
programmers have spent many tedious hours “tweaking”
the sensor parameters of a given AMR to get the AMR
working properly. Although tedious and time consuming,
it has worked well for many programmers. The problem
with this method is that the programmer was constantly
“tweaking” sensor parameters. If one of the sensors
malfunctioned and needed to be replaced, a programmer
had to recalibrate, or if one of the sensor’s orientation
changed, again recalibration would be required.
 Problems do not end with tedious
characterizations. When a programmer creates a driver
for an AMR, the driver is usually robust and reliable.
However, it has certain peculiarities and the bias of the
original programmer built into the drivers [2]. For
example, programmer A’s definition of close might mean
four inches; while, programmer B’s might be 12 inches.
Both versions will work as long as the programmer
understands these assumptions taken by the original

programmer writing the drivers. The biggest problem
arises when the sensors are changed, damaged, incorrectly
wired, placed in different locations, etc. Take the instance
where the sensors are rearranged to meet a new
requirement. This might result in sensor 1, which initially
pointed forward, pointing right. With other sensors also
changing in a similar fashion, it would require total
rewriting of the drivers for the robot, since sensor 1,
previously used to detect obstacles in the front, can no
longer be used for that purpose. Most programmers of
AMRs have experienced some of these problems in one
form or another.

2 Innate Knowledge in Sensory Driver Layer
 Using Innate Learning [3], certain information
and capabilities are hard coded onto the AMR. The AMR
has prior knowledge of how many sensor ports it has and
how it can get raw sensor data from those ports.
However, this does not mean that the AMR is
preprogrammed with what type of sensors, how many
ports actually have sensor connected, or any information
about thresholds or reading ranges. The AMR also has
prior information about the complete list of the sensor
scenarios. For example, “object to the front,” “object to
the far front,” “object to the right,” etc. The AMR only
know that this list exist, but it does not have any
information about the properties of the scenarios in the
list or what they represent. The AMR will learn the
meaning of these scenarios through the AEDEC
architecture.

Table 1: The partial list of the scenarios and descriptions
from [1]

3 Scenarios
 The sensory driver layer is made up of 60 unique
scenarios. Scenarios are highly structured environmental
situations presented to the AMR during the sensory driver
layer learning process. Each scenario was chosen for its
uniqueness and for the likelihood of an AMR
encountering the scenario during operation. This paper
does not make any assertions about the completeness or
usability of the given set of scenarios. The set of

scenarios was created from the past AMR programming
experiences.
 The complete list of the scenarios can be found
in Table 1. NullTemp was created by having an empty
environment and is useful for minimizing detection of
“phantom” objects at the extreme edges of the detection
range of the sensors. The next 16 scenarios, FC to BL,
were created by placing a 5 ¼ X 5 ¼ object in various
locations around the AMR. The directions represented by
the 16 scenarios are self explanatory. For example, F
represent front of the AMR; while L represents left of the
AMR. The angle between F and L would be 90 degrees.
As for FL, it is in between F and L, 45 degrees from each.
As for distance, “far” is placed 18 inches from the center
of the AMR; while, normal is place 11 inches from the
center of the AMR.

Figure 1: Picture of WFL30F scenario. In the picture
Talrik II is facing the top of the picture.

 AMRs tend to encounter “wall” type scenarios
more frequently and it is more important to be able to
recognize different orientations of the “wall” than a small
obstacle. Hence, over half, 33 to be exact, are “wall”

scenarios. In fact the
remaining scenarios (corners
and dead ends) can also be
classified as “walls,” putting
majority of the scenarios in
the “wall” category. All the
“wall” scenario names start
with W. 30 out of 33 “wall”
scenarios are to the left and
right of the AMR with the
other three in the front. All
“wall” scenarios were created

using a “wall” 24 inches in length. WR represents a wall
that is parallel to the axis line running from the front to
the back of the AMR. 15 and 30 degrees represent the
angle of the “wall” with respect to WR and WL. The
distance represented by “close,” “normal,” and “far” for
the “walls” are nine, 11, and 13 inches, respectively, from
the center of the AMR. An example of a wall scenario
(Wall Front Left 30 degrees Far) is shown in Figure 1.
 “Corners” are implemented using two 12 inch
walls. They are placed at 90 degrees respect to each other

Scenario Name Description Scenario Name Description
NullTemp Empty environment WBR30 Wall Back Right 30 degrees
FC object Front Close WBR30F Wall Back Right 30 degrees Far
F object Front WLC Wall Left Close
FRC object Front Right Close WL Wall Left
FR object Front Right WLF Wall Left Far
FLC object Front Left Close WFL15C Wall Front Left 15 degrees Close
FL object Front Left WFL15 Wall Front Left 15 degrees
LC object Left Close WFL15F Wall Front Left 15 degrees Far

()∑
−

=

−=
1

0

2
N

n
nn YXMED

Equation 1

to create a corner, as shown in Figure 2. Each of the
walls making the corner is placed 11 inches away from
the center of the AMR. The direction represents the
position of the corner of the walls respect to the AMR, as
shown in Figure 2 (Corner Back Left). The final category
of scenarios is DF and DB. In the case of DF, three 12
inch walls are used to surround the front of the AMR to
create a “dead end.”
 There are enough variations in the given set of
scenarios to represent most of the real world environment
that an AMR might face. Furthermore, from this basic set
of 60 scenarios, more complex scenarios can be created
by “merging” two or more scenarios together.

Figure 2: A picture of CBL scenario. In the picture
Talrik II is facing the top of the picture.

4 Learning Algorithm for the Sensory Driver
Layer

 For each scenario, the appropriate environment is
created according to the specifications of the scenarios as
described in the previous section. The AMR is
programmed to ask for a scenario and then the scenario is
presented to the AMR. The AMR takes a complete
reading of all the sensor ports and creates a template for
the given scenario. This process is repeated for every
scenario in the list. For this experiment, a human helper
laid out the scenarios for the AMR. Future
implementations will incorporate an automatic
environment controlled by the AMR to lay out the
environment for each scenario.
 In order to create the templates, six different
readings are made for the same scenario. Then for each
sensor port, the highest and the lowest values are dropped
and the four remaining readings are averaged to create
each scenario template. This filtering process was
implemented to minimize the environmental noise error,
sensor fluctuations, etc.
 Once the scenario templates are complete,
templates could be used to find the closest match for any
new scenario that the AMR might encounter. The best
match was found using a modified Euclidean distance.
For example, AMR would take a sensor sweep of all it

sensors and then find the modified Euclidean distance of
the new scenario with respect to all of the scenarios in the
sensory driver layer. The scenario with the smallest
distance is then selected as the match. The modified
Euclidean distance is given in Equation 1, where N =
number of sensors; n = sensor number; X = database of
template values; Y = new sensor readings to be matched.

5 Analysis of the Sensory Driver Layer
 Once the scenario templates were created, series
of experiments were performed to test the performance
and usability of the sensory driver layer.

5.1 Recognition of the Original Scenarios

 The AMR was given the same set of scenarios to
see if it could properly identify the scenarios that it
learned. In order to analyze the data, a table of modified
Euclidean distance (MED) was made. A complete table is
60 by 60, where horizontal headings represent the
scenarios in the database and the vertical headings
represent scenarios presented to the AMR for
identification. Each cell represents the MED of the
corresponding vertical and horizontal headings. For
readability, the cell containing the smallest MED is
highlighted with thicker borders. For 60 scenarios tested,
the AMR correctly identified all 60 scenarios, represented
by the smallest MED occurring on the diagonal of the
table.

Table 2 Partial table of modified Euclidean distance of
each scenario respect to the database of
scenario templates from [1]

 For easy reference, a small part of the table is
shown in Table 2. In this table the highlighted cells
representing matches mostly have values in the single
digits, while other cells average in the hundreds and
sometimes in the thousands. Larger differences represent
less likelihood for misidentification. For example,
reading across the row labeled NullTemp in Table 2, the

NullTemp FC F FRC FR FLC FL LC
NullTemp 3 1183 206 1010 254 1442 224 742
 FC 1133 9 328 1164 962 1206 834 1842
 F 290 372 3 871 365 1075 269 999
 FRC 999 1261 816 4 252 2348 1200 1738
 FR 286 1056 325 253 3 1707 503 1025
 FLC 1331 1031 942 2218 1562 18 452 1230
 FL 307 799 246 1278 552 476 10 716
 LC 713 1859 916 1720 964 1058 532 12

shaded first cell represents the match between NullTemp
and NullTemp with a value of three. The next smallest
value in the row is 39, representing the MED between
NullTemp and B (object to the Back). Although 39 is an
order of magnitude larger than the matching value of
three, 39 is relatively smaller because B is a small object
relatively far away from the AMR. Consequently, the
AMR makes a smaller distinction between NullTemp and
B than between NullTemp and BC (object to the Back
Close).

Figure 3 Talrik II Sensor Layout Diagram

Table 3 Partial table of modified Euclidean distance of
each scenario respect to the database of
scenario templates with one sensor
malfunctioning from [1]

5.2 Recognition of the Original Scenarios with One
Malfunctioning Sensor

 To observe how a malfunctioning sensor would
affect the performance of the sensory driver layer, one of
the sensors was disabled from getting any readings.
IRDFML, a “front left” sensor shown in Figure 3, was
disabled and the previous experiment described in section
5.1 was repeated. The partial results are found in Table 3.
The experiment resulted in 15 misidentifications out of
60.

 Upon closer analysis, one can observe that the 15
misidentifications are not random; instead, they are
related closely to the correct scenario. For example, two
of the misidentifications are shown in Table 3. First, FC
(object to the close front) is incorrectly identified as F
(object to the front). Although the distance of the object
was wrong (“normal” distance rather than “close”
distance), the sensory driver layer correctly identified the
direction of the object (“front”). Complete analysis
shows that most of the errors occur while trying to
identify different types of “walls.” This is a consequence
of the fact that as discussed in section 3, “wall” scenarios
consist of “walls” shifted two inches from each other and
rotated 15 degrees from each other. These “wall”
scenarios that physically differ from each other in small
variations cause the sensory driver layer to make
mistakes. However, these mistakes are expected due to a
malfunctioning sensor. It should be noted that the
mistakes are closely related to the correct scenarios,
demonstrating the flexibility of the sensory driver layer.
Other errors include wall being mistaken for an object, a
wall being shifted at an angle, etc. But in all cases,
relative direction of the obstacle is consistent.

Table 4 Partial table of modified Euclidean distance of
each scenario respect to the database of
scenario templates with two sensors
malfunctioning from [1]

5.3 Recognition of the Original Scenarios with Two
Malfunctioning Sensors

 To take the analysis further, a second sensor was
disabled in addition to the sensor disabled in section 5.2.
The second sensor was chosen form the same quadrant of
the first sensor and from one of the primary axis sensors
(sensor located in the front, left, right, and back). The
second sensor chosen was the left sensor, IRDL shown in
Figure 3. Again the experiment performed in sections 5.1
and 5.2 was repeated. The partial results are given in
Table 4. With two sensors disabled, this experiment
resulted in 20 errors, five more than with just one sensor
disabled. Analysis of the data showed similar results with
the experiment with one sensor disabled, discussed in
section 5.2. Majority of the misidentifications made
errors in distance and the “wall” scenarios. In comparing

NullTem FC F FRC FR FLC FL LC
NullTem 15 1153 196 860 188 1430 232 724
 FC 744 494 259 687 525 1761 863 1423
 F 242 668 75 703 261 1403 393 921
 FRC 927 1175 726 14 228 2234 1120 1636
 FR 314 1000 307 235 11 1693 523 1023
 FLC 806 1480 771 1543 961 659 437 765
 FL 169 1193 302 990 338 932 136 548
 LC 522 1676 727 1379 697 1083 413 237

NullTem FC F FRC FR FLC FL LC
NullTem 2 1270 245 1021 255 1453 227 711
 FC 735 489 250 786 570 1752 854 1414
 F 209 687 66 790 284 1444 386 918
 FRC 991 1113 728 28 260 2318 1198 1730
 FR 306 1040 323 239 5 1759 541 1045
 FLC 782 1540 785 1661 1009 637 413 681
 FL 130 1274 315 1155 399 967 123 539
 LC 678 1916 921 1697 931 1147 545 7

Table 4 (MED data of two sensors disabled) with Table 3
(MED data of one sensor disabled), mistakes were made
in direction of the object as well. This is different from
the one sensor disabled case, in which direction was
pretty consistent. Results in the complete table show
further degradation in the performance of the sensory
driver layer, due to two sensor malfunction.

Figure 4 Scenario mapping of a 5 ¼ x 5 ¼ inch block in
the 180 degree region in front of the AMR.
Each radial line represents 10 degree offsets
and each point represents one inch offsets

5.4 Sensor Template Mapping for Objects and Walls

 Thus far in the proceeding sections, namely5.1,
5.2, and 5.3, sensory driver layer was tested with
scenarios identical to the scenarios used during the
learning process. The next few experiments test the
sensory driver layer with scenarios different from the
scenarios used during the learning process. The first of
these experiments creates a sensor template map covering
front half of the AMR. The sensor template map was
created by placing a 5 ¼ x 5 ¼ inch block in different
locations within a 180 degree region about the AMR. The
block was placed every inch starting from seven inches to
24 inches in a line pointing radially out from the center of
the AMR. This was done for every 10 degrees for the 180
degree region around the front of the AMR.
 The scenario map from the experiment is
presented in Figure 4. From this plot, one can observe
that the region surrounding the original location of a
scenario is also identified as the same scenario. For
example, gray dots in Figure 4 represents “object to the
front” (F). Original location of the F scenario is directly
in front of the AMR 18 inches away from the center of the
AMR. Notice that many other dots in the region also
share the same classification of F. These groupings of
regions around the original location of the scenarios
indicate that similar scenarios will be properly identified
as intended.
 One will notice that not all measurements extend
out the same distance. The lack of a plot represents the

distance at which the sensory driver layer started
identifying a NullTemp, an empty environment. The
differences in this and in other characteristics are due to
inherent differences in the sensor and/or their alignment.

Figure 5 Scenario mapping of a wall being rotated
around an AMR every five degrees

 Next, the usability of the sensory driver layer
was tested by rotating a wall around the AMR to verify
that different wall angles could be identified. A wall was
rotated every five degrees starting from 30 degrees to -30
degrees, where the vertical line represents 0 degrees. One
can observe from Figure 5, the consistent transition from
one scenario to the next. Figure 5 shows that the wall was
classified as “wall front right 30 degrees,” “wall front
right 15 degrees,” “wall right,” “wall back right 15
degrees,” and “wall back right 30 degrees” as the wall is
rotated around the AMR.
 The results presented in Figure 4 and Figure 5
show the adaptability of the sensory driver layer to
properly identify untrained scenarios by finding the
nearest trained scenario.

5.5 Object Morphing

 The scenario mapping experiment showed the
effects of varying the location of objects throughout the
region. This section presents experiments that vary the
shapes and sizes of the objects. In the first experiment a
block (5 ¼ x 5 ¼ inch), used as an obstacle during the
learning procedure, was lengthened by two inch
increments to observe at what length the object would
start to be recognized as a “wall.” Figure 6 presents a
graphical result of the experiment. The objects were
placed 11 inches from the center of the AMR. The object
was identified as an obstacle from 5 ¼ inches in length

-20 -10 0 10 20
Distance in inches

5

10

15

20

25

ecnatsiD
ni

sehcni

-5 0 5 10 15 20
Distance in inches

-10

-5

0

5

10

ecnatsiD
ni

sehcni

to11 ¼ inches, as a “wall far away” from 13 ¼ inches to
19 ¼ inches, and as a “wall” from 21 ¼ inches to 27 ¼
inches. The dimensions of the objects used during the
learning process for an obstacle was 5 ¼ inches, while a
wall was 28 inches in length. The sensory driver layer
identified the object as a wall starting at 13 ¼ inches.

Figure 6 The plot of lengthening a 5 ¼ inch object to a
27 ¼ inch object in 2 inch increments

Figure 7 The plot of bending a wall into a corner by 10
degree increments.

 In the second experiment, a wall was bent ten
degrees at a time into a corner. The results shown in
Figure 7 shows that the transition from “wall right,” “wall
right close,” and “corner right” is consistent and smooth.
 These object morphing experiments show that
the sensory driver layer can deal with objects of different
shapes and sizes. The object mapping and object
morphing experiments demonstrate that the sensory driver
layer based on the AEDEC architecture is highly robust
and highly adaptable to different environmental scenarios,
even for the untrained scenarios.

Table 5 Partial table of modified Euclidean distance of
each scenario respect to the new database of
scenario templates with two sensors
malfunctioning from [1]

6 Sensory Driver Layer’s Ability to
Compensate for Sensor Malfunctions

 Recall the experiments performed in sections 5.2
and 5.3, where one and two sensors were disabled,
respectively. With one sensor disabled, it resulted in 15
errors out of 60; while, with two sensors disabled, it
resulted in 20 errors out of the same 60. Normally, the
problem would be resolved by replacing the
malfunctioning sensor or sensors and recalibrating the
parameters. But what if for some reason the sensors
could not be replaced. Then it would require
reprogramming of the AMR. The programmer has to
manually compensate for the malfunctioning sensors by
recreating the drivers. This would be a time consuming
and complex process. Even worse, if the code depends on
direct sensor values, much of the code probably has to be
rewritten to compensate for the bad sensors. These
options would not be acceptable in most situations.
 The sensory driver layer, presented by AEDEC
architecture, allows for quick and easy method for
compensating for sensor malfunctions and/or changes by
simply relearning the scenarios. In the first experiment,
AMR with one bad sensor relearned the 60 scenarios.
Then it was tested, as described in section 5.1, to see if
any improvements could be made on the 15 errors it had
before the retraining. It passed with flying colors,
improving from 15 errors to none. It properly identified
all 60. This process was extended to the case where two
sensors were bad, which previously resulted in 20 out of
60 errors. Even with two bad sensors, it properly
identified all 60 scenarios after repeating the learning
process. Partial results are given in Table 5.

7 Real-time Self Correcting Sensory Driver
Layer

In section 6, sensory driver layer easily adapted to
the malfunctioning sensors by relearning the sensory
driver layer with the malfunctioning sensors. Although it

NullTemp FC F FRC FR FLC FL LC
NullTemp 3 1183 206 1010 254 1442 224 742
 FC 1133 9 328 1164 962 1206 834 1842
 F 290 372 3 871 365 1075 269 999
 FRC 999 1261 816 4 252 2348 1200 1738
 FR 286 1056 325 253 3 1707 503 1025
 FLC 1331 1031 942 2218 1562 18 452 1230
 FL 307 799 246 1278 552 476 10 716
 LC 713 1859 916 1720 964 1058 532 12

-10 -5 0 5 10
Distance in inches

-2.5
0

2.5
5

7.5
10

ecnatsiD
ni

sehcni

-15 -10 -5 0 5 10 15
Distance in inches

-10

-5

0

5

10

15

ecnatsiD
ni

sehcni

is a simple and efficient method, it does require a
relearning process. If an AMR can detect and compensate
for a malfunctioning sensor in real-time it would be that
much more useful. A closer comparison of the new
sensory driver layer to the original resulted in a surprising
but an obvious result. The new drivers were almost
identical to the old, with the exception of the
malfunctioning sensors. The net effect of the relearning
process was equivalent to just dropping the
malfunctioning sensor from the input sensor vector and
dropping the malfunctioning sensor’s component from
each of the previously learned scenarios. Detection of a
malfunctioning sensor is surprisingly easy. During the
initial boot up procedure, an AMR can make sensor
readings and compare against its scenarios and just
disable any sensor with improper readings.

As long as an AMR can detect a malfunctioning
sensor, it can ignore that sensor reading and also ignore
the MED generated by the offending sensor respect to
each of the scenarios. In effect, adapting the sensory
driver layer in real-time to malfunctioning sensor or
sensors.

8 Conclusion
 This paper outlines a methodology of
autonomously creating a sensory driver layer using a
scenario based approach. The supporting analysis
demonstrated that the resulting drivers are robust and
adaptable. It has been shown that the resulting sensory
driver has real-time discrete error detection and correction
capabilities. Without any human intervention, a robust
sensory driver is created through sensor fusion. It
presents an alternative to explicitly creating a sensor
fusion architecture.

Reference:
[1] T. A. Choi, “Autonomous Evolution of Sensory and

Actuator Driver Layers through Environmental
Constraints,” Ph.D. Dissertation (University of
Florida, Gainesville, FL 32611, December 2002).

[2] T. A. Choi, E. A. Yim, and K. L. Doty,
"Environmental Reinforcement Learning: A Real-
Time Architecture for Primitive Behavior
Refinement," ROBOLEARN 96: An International
Workshop on Learning for Autonomous Robots (Key
West, Florida, May 19-20, 1996), pp. 20-27.

[3] T. A. Choi, E. A. Yim, A. A. Arroyo, and K. L. Doty,
“Automatic Configuration of Sensors and Actuators
Through Innate Learning,” Robotics 98: The 3rd
International Conference and Exposition on Robotics
for Challenging Environments (Albuquerque, NM, 26-
30 April 1998), pp. 64-70.

[4] T. Henderson and E. Shilcrat, “Logical Sensor
System,” J. Robot. Syst., vol. 1, no. 2, pp. 169-193.

[5] T. Henderson and E. Shilcrat, “A Fault Toerant Sensor
Scheme,” Proc. 7th Int. Conf. Pattern Recognition,
(Montreal, PQ, Canada, July 1984), pp. 663-665.

[6] J. Wang, J. Su, Y. Xi, “COM-based Software
Architecture for Multisensor Fusion System,”
Information Fusion, vol. 2 (2001), pp. 261-270.

[7] T. Henderson and E. Weitz, C. Hanson, and A.
Mitiche, “Multisensor Knowledge Systems:
Interpreting 3-D Structure,” Int. J. Robot. Res., vol. 7,
no. 6, (1988), pp. 114-137.

[8] J. C. Roger and R. A. Browse, “An Object-based
Representation for Multisensory Robotic Perception,”
Proc. Workshop Spatial Reasoning and Multi-Sensor
Fusion, (St. Charles, IL., Oct. 1987), pp.13-20.

[9] R. C. Luo and M. G. Kay, “Multisensor Integration
and Fusion in Intelligent System,” Systems, Man, and
Cybernetics, vol. 19, no. 5, (Sept./Oct. 1989), pp. 901-
916.

