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Abstract 
 
 Sensor fusion and sensor integration is becoming 
an increasingly popular approach in dealing with 
complex sensor systems in autonomous mobile robots 
(AMR).  However, the procedure for the sensor 
integration and sensor fusion is a non-trivial process.  
This paper presents a scenario based approach to sensor 
fusion based on the Autonomous Evolution of sensory and 
actuator Driver layers through Environmental 
Constraints (AEDEC) [1].  Using the scenario based 
approach, the programmer’s work of creating a sensory 
driver will be eliminated by having the AMR learn the 
driver on is own.  In the process of creating each 
scenario, sensor fusion is automatically implemented.  If 
sensors change or even if the sensor configuration 
changes, the driver can be updated by having the AMR 
relearn the driver over again.  Due to the tabular 
structure of the scenario based sensory drivers, 
malfunctioning sensors can not only be detected, but the 
driver can automatically adapt to the malfunctioning 
sensor in real-time.  Furthermore, different AMRs trained 
using AEDEC architecture will have similar 
interpretations of its environment.  This is guaranteed by 
having the AMR learn the driver in the same highly 
structured training environment.  The behavioral coding 
is simplified by eliminating any reference to hardware 
dependent parameters.  Finally, the level of abstraction 
and the consistency of the highly structured environment 
will allow for code portability.   

1 Introduction 
 Sensors are a critical component of an AMR.  
Sensors’ performance and the way sensors are utilized can 
greatly affect the performance of an AMR.  Many of the 
current research has been centered on different 
methodologies concerning analysis, optimization, and 
procedure concerning sensor fusion.  “Logical sensors” 
presented by Henderson and Shilcrat [4, 5], COM-based 
software architecture presented by Wang et al. [6], 
Hierarchical Phase-Template Paradigm presented by Lou 
and Lin, Object Oriented Programming [7, 8] are just 
some of the research which have shown very promising 
results.  For more detailed background refer to Luo and 
Kay [9], who presents an excellent survey of multisensor 

integration and fusion.  Each of the methodology listed 
above require non-trivial human planning for 
implementation.   
 Traditionally, sensors are painstakingly 
characterized and studied to find the proper thresholds 
and use of the sensors.  Although it is time consuming, 
this method has worked well in many applications.  The 
problem arises when there are many sensors.  In order to 
guarantee the same performance for the new sensor, every 
new sensor had to be characterized, since different 
sensors can have different characteristics.  The problems 
are further compounded in the cases where the sensors are 
being added to not just one AMR but multiple AMRs and, 
even worse, multiple AMRs of different types.  When 
high precision sensors are used, the need for constant 
characterization of sensors can be reduced.  The problem 
with this option is that the cost of the AMR increases.   
 Even if high precision sensors are used, sensor’s 
performance and characteristics are greatly effected by 
how the sensor is physically implemented on an AMR.  
For example, an infra-red proximity sensor’s performance 
is greatly effected by the orientation of the sensor on the 
AMR’s platform.  The variations are caused by different 
angles with respect to the environment and interference 
from other physical parts of the AMR causing partial 
reflections and partial blockage.   
 Now imagine trying to create a sensory driver 
layer for a complex sensor suite of an AMR.  AMR 
programmers have spent many tedious hours “tweaking” 
the sensor parameters of a given AMR to get the AMR 
working properly.  Although tedious and time consuming, 
it has worked well for many programmers.  The problem 
with this method is that the programmer was constantly 
“tweaking” sensor parameters.  If one of the sensors 
malfunctioned and needed to be replaced, a programmer 
had to recalibrate, or if one of the sensor’s orientation 
changed, again recalibration would be required.   
 Problems do not end with tedious 
characterizations.  When a programmer creates a driver 
for an AMR, the driver is usually robust and reliable.  
However, it has certain peculiarities and the bias of the 
original programmer built into the drivers [2].  For 
example, programmer A’s definition of close might mean 
four inches; while, programmer B’s might be 12 inches.  
Both versions will work as long as the programmer 
understands these assumptions taken by the original 



 

 

programmer writing the drivers.  The biggest problem 
arises when the sensors are changed, damaged, incorrectly 
wired, placed in different locations, etc.  Take the instance 
where the sensors are rearranged to meet a new 
requirement.  This might result in sensor 1, which initially 
pointed forward, pointing right.  With other sensors also 
changing in a similar fashion, it would require total 
rewriting of the drivers for the robot, since sensor 1, 
previously used to detect obstacles in the front, can no 
longer be used for that purpose.  Most programmers of 
AMRs have experienced some of these problems in one 
form or another.   

2 Innate Knowledge in Sensory Driver Layer 
 Using Innate Learning [3], certain information 
and capabilities are hard coded onto the AMR.  The AMR 
has prior knowledge of how many sensor ports it has and 
how it can get raw sensor data from those ports.  
However, this does not mean that the AMR is 
preprogrammed with what type of sensors, how many 
ports actually have sensor connected, or any information 
about thresholds or reading ranges.  The AMR also has 
prior information about the complete list of the sensor 
scenarios.  For example, “object to the front,” “object to 
the far front,” “object to the right,” etc.  The AMR only 
know that this list exist, but it does not have any 
information about the properties of the scenarios in the 
list or what they represent.  The AMR will learn the 
meaning of these scenarios through the AEDEC 
architecture. 
 

Table 1: The partial list of the scenarios and descriptions 
from [1] 

3 Scenarios 
 The sensory driver layer is made up of 60 unique 
scenarios.  Scenarios are highly structured environmental 
situations presented to the AMR during the sensory driver 
layer learning process.  Each scenario was chosen for its 
uniqueness and for the likelihood of an AMR 
encountering the scenario during operation.  This paper 
does not make any assertions about the completeness or 
usability of the given set of scenarios.  The set of 

scenarios was created from the past AMR programming 
experiences.  
 The complete list of the scenarios can be found 
in Table 1.  NullTemp was created by having an empty 
environment and is useful for minimizing detection of 
“phantom” objects at the extreme edges of the detection 
range of the sensors.  The next 16 scenarios, FC to BL, 
were created by placing a 5 ¼ X 5 ¼ object in various 
locations around the AMR.  The directions represented by 
the 16 scenarios are self explanatory.  For example, F 
represent front of the AMR; while L represents left of the 
AMR.  The angle between F and L would be 90 degrees.  
As for FL, it is in between F and L, 45 degrees from each.  
As for distance, “far” is placed 18 inches from the center 
of the AMR; while, normal is place 11 inches from the 
center of the AMR.   

Figure 1:  Picture of WFL30F scenario.  In the picture 
Talrik II is facing the top of the picture. 

 AMRs tend to encounter “wall” type scenarios 
more frequently and it is more important to be able to 
recognize different orientations of the “wall” than a small 
obstacle.  Hence, over half, 33 to be exact, are “wall” 

scenarios.  In fact the 
remaining scenarios (corners 
and dead ends) can also be 
classified as “walls,” putting 
majority of the scenarios in 
the “wall” category.  All the 
“wall” scenario names start 
with W.  30 out of 33 “wall” 
scenarios are to the left and 
right of the AMR with the 
other three in the front.  All 
“wall” scenarios were created 

using a “wall” 24 inches in length.  WR represents a wall 
that is parallel to the axis line running from the front to 
the back of the AMR.  15 and 30 degrees represent the 
angle of the “wall” with respect to WR and WL.  The 
distance represented by “close,” “normal,” and “far” for 
the “walls” are nine, 11, and 13 inches, respectively, from 
the center of the AMR.  An example of a wall scenario 
(Wall Front Left 30 degrees Far) is shown in Figure 1. 
 “Corners” are implemented using two 12 inch 
walls.  They are placed at 90 degrees respect to each other 

Scenario Name Description Scenario Name Description
NullTemp Empty environment WBR30 Wall Back Right 30 degrees
FC object Front Close WBR30F Wall Back Right 30 degrees Far
F object Front WLC Wall Left Close
FRC object Front Right Close WL Wall Left 
FR object Front Right WLF Wall Left Far
FLC object Front Left Close WFL15C Wall Front Left 15 degrees Close
FL object Front Left WFL15 Wall Front Left 15 degrees
LC object Left Close WFL15F Wall Front Left 15 degrees Far
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to create a corner, as shown in Figure 2.  Each of the 
walls making the corner is placed 11 inches away from 
the center of the AMR.  The direction represents the 
position of the corner of the walls respect to the AMR, as 
shown in Figure 2 (Corner Back Left).  The final category 
of scenarios is DF and DB.  In the case of DF, three 12 
inch walls are used to surround the front of the AMR to 
create a “dead end.”   
 There are enough variations in the given set of 
scenarios to represent most of the real world environment 
that an AMR might face.  Furthermore, from this basic set 
of 60 scenarios, more complex scenarios can be created 
by “merging” two or more scenarios together.   

Figure 2:  A picture of CBL scenario.  In the picture 
Talrik II is facing the top of the picture. 

4 Learning Algorithm for the Sensory Driver 
Layer 

 For each scenario, the appropriate environment is 
created according to the specifications of the scenarios as 
described in the previous section.  The AMR is 
programmed to ask for a scenario and then the scenario is 
presented to the AMR.  The AMR takes a complete 
reading of all the sensor ports and creates a template for 
the given scenario.  This process is repeated for every 
scenario in the list.  For this experiment, a human helper 
laid out the scenarios for the AMR.  Future 
implementations will incorporate an automatic 
environment controlled by the AMR to lay out the 
environment for each scenario.   
 In order to create the templates, six different 
readings are made for the same scenario.  Then for each 
sensor port, the highest and the lowest values are dropped 
and the four remaining readings are averaged to create 
each scenario template.  This filtering process was 
implemented to minimize the environmental noise error, 
sensor fluctuations, etc.   
 Once the scenario templates are complete, 
templates could be used to find the closest match for any 
new scenario that the AMR might encounter.  The best 
match was found using a modified Euclidean distance.  
For example, AMR would take a sensor sweep of all it 

sensors and then find the modified Euclidean distance of 
the new scenario with respect to all of the scenarios in the 
sensory driver layer.  The scenario with the smallest 
distance is then selected as the match.  The modified 
Euclidean distance is given in Equation 1, where N = 
number of sensors; n = sensor number; X = database of 
template values; Y = new sensor readings to be matched. 

5 Analysis of the Sensory Driver Layer 
 Once the scenario templates were created, series 
of experiments were performed to test the performance 
and usability of the sensory driver layer.  

5.1 Recognition of the Original Scenarios 

 The AMR was given the same set of scenarios to 
see if it could properly identify the scenarios that it 
learned.  In order to analyze the data, a table of modified 
Euclidean distance (MED) was made.  A complete table is 
60 by 60, where horizontal headings represent the 
scenarios in the database and the vertical headings 
represent scenarios presented to the AMR for 
identification.  Each cell represents the MED of the 
corresponding vertical and horizontal headings.  For 
readability, the cell containing the smallest MED is 
highlighted with thicker borders.  For 60 scenarios tested, 
the AMR correctly identified all 60 scenarios, represented 
by the smallest MED occurring on the diagonal of the 
table. 
 

Table 2 Partial table of modified Euclidean distance of 
each scenario respect to the database of 
scenario templates from [1] 

 For easy reference, a small part of the table is 
shown in Table 2.  In this table the highlighted cells 
representing matches mostly have values in the single 
digits, while other cells average in the hundreds and 
sometimes in the thousands.  Larger differences represent 
less likelihood for misidentification.  For example, 
reading across the row labeled NullTemp in Table 2, the 

NullTemp FC  F  FRC  FR  FLC  FL  LC
NullTemp 3 1183 206 1010 254 1442 224 742
 FC 1133 9 328 1164 962 1206 834 1842
 F 290 372 3 871 365 1075 269 999
 FRC 999 1261 816 4 252 2348 1200 1738
 FR 286 1056 325 253 3 1707 503 1025
 FLC 1331 1031 942 2218 1562 18 452 1230
 FL 307 799 246 1278 552 476 10 716
 LC 713 1859 916 1720 964 1058 532 12



 

 

shaded first cell represents the match between NullTemp 
and NullTemp with a value of three.  The next smallest 
value in the row is 39, representing the MED between 
NullTemp and B (object to the Back).  Although 39 is an 
order of magnitude larger than the matching value of 
three, 39 is relatively smaller because B is a small object 
relatively far away from the AMR.  Consequently, the 
AMR makes a smaller distinction between NullTemp and 
B than between NullTemp and BC (object to the Back 
Close).   

Figure 3  Talrik II Sensor Layout Diagram 

Table 3  Partial table of modified Euclidean distance of 
each scenario respect to the database of 
scenario templates with one sensor 
malfunctioning from [1] 

5.2 Recognition of the Original Scenarios with One 
Malfunctioning Sensor 

 To observe how a malfunctioning sensor would 
affect the performance of the sensory driver layer, one of 
the sensors was disabled from getting any readings.  
IRDFML, a “front left” sensor shown in Figure 3, was 
disabled and the previous experiment described in section 
5.1 was repeated.  The partial results are found in Table 3.  
The experiment resulted in 15 misidentifications out of 
60.   

 Upon closer analysis, one can observe that the 15 
misidentifications are not random; instead, they are 
related closely to the correct scenario.  For example, two 
of the misidentifications are shown in Table 3.  First, FC 
(object to the close front) is incorrectly identified as F 
(object to the front).  Although the distance of the object 
was wrong (“normal” distance rather than “close” 
distance), the sensory driver layer correctly identified the 
direction of the object (“front”).  Complete analysis 
shows that most of the errors occur while trying to 
identify different types of “walls.”  This is a consequence 
of the fact that as discussed in section 3, “wall” scenarios 
consist of “walls” shifted two inches from each other and 
rotated 15 degrees from each other.  These “wall” 
scenarios that physically differ from each other in small 
variations cause the sensory driver layer to make 
mistakes.  However, these mistakes are expected due to a 
malfunctioning sensor.  It should be noted that the 
mistakes are closely related to the correct scenarios, 
demonstrating the flexibility of the sensory driver layer.  
Other errors include wall being mistaken for an object, a 
wall being shifted at an angle, etc.  But in all cases, 
relative direction of the obstacle is consistent.   
 

Table 4 Partial table of modified Euclidean distance of 
each scenario respect to the database of 
scenario templates with two sensors 
malfunctioning from [1] 

5.3 Recognition of the Original Scenarios with Two 
Malfunctioning Sensors 

 To take the analysis further, a second sensor was 
disabled in addition to the sensor disabled in section 5.2.  
The second sensor was chosen form the same quadrant of 
the first sensor and from one of the primary axis sensors 
(sensor located in the front, left, right, and back).  The 
second sensor chosen was the left sensor, IRDL shown in 
Figure 3.  Again the experiment performed in sections 5.1 
and 5.2 was repeated.  The partial results are given in 
Table 4.  With two sensors disabled, this experiment 
resulted in 20 errors, five more than with just one sensor 
disabled.  Analysis of the data showed similar results with 
the experiment with one sensor disabled, discussed in 
section 5.2.  Majority of the misidentifications made 
errors in distance and the “wall” scenarios.  In comparing 

NullTem FC  F  FRC  FR  FLC  FL  LC
NullTem 15 1153 196 860 188 1430 232 724
 FC 744 494 259 687 525 1761 863 1423
 F 242 668 75 703 261 1403 393 921
 FRC 927 1175 726 14 228 2234 1120 1636
 FR 314 1000 307 235 11 1693 523 1023
 FLC 806 1480 771 1543 961 659 437 765
 FL 169 1193 302 990 338 932 136 548
 LC 522 1676 727 1379 697 1083 413 237

NullTem FC  F  FRC  FR  FLC  FL  LC
NullTem 2 1270 245 1021 255 1453 227 711
 FC 735 489 250 786 570 1752 854 1414
 F 209 687 66 790 284 1444 386 918
 FRC 991 1113 728 28 260 2318 1198 1730
 FR 306 1040 323 239 5 1759 541 1045
 FLC 782 1540 785 1661 1009 637 413 681
 FL 130 1274 315 1155 399 967 123 539
 LC 678 1916 921 1697 931 1147 545 7



 

 

Table 4 (MED data of two sensors disabled) with Table 3 
(MED data of one sensor disabled), mistakes were made 
in direction of the object as well.  This is different from 
the one sensor disabled case, in which direction was 
pretty consistent.  Results in the complete table show 
further degradation in the performance of the sensory 
driver layer, due to two sensor malfunction.  

Figure 4 Scenario mapping of a 5 ¼ x 5 ¼ inch block in 
the 180 degree region in front of the AMR.  
Each radial line represents 10 degree offsets 
and each point represents one inch offsets 

5.4 Sensor Template Mapping for Objects and Walls 

 Thus far in the proceeding sections, namely5.1, 
5.2, and 5.3, sensory driver layer was tested with 
scenarios identical to the scenarios used during the 
learning process.  The next few experiments test the 
sensory driver layer with scenarios different from the 
scenarios used during the learning process.  The first of 
these experiments creates a sensor template map covering 
front half of the AMR.  The sensor template map was 
created by placing a 5 ¼ x 5 ¼ inch block in different 
locations within a 180 degree region about the AMR.  The 
block was placed every inch starting from seven inches to 
24 inches in a line pointing radially out from the center of 
the AMR.  This was done for every 10 degrees for the 180 
degree region around the front of the AMR.   
 The scenario map from the experiment is 
presented in Figure 4.  From this plot, one can observe 
that the region surrounding the original location of a 
scenario is also identified as the same scenario.  For 
example, gray dots in Figure 4 represents “object to the 
front” (F).  Original location of the F scenario is directly 
in front of the AMR 18 inches away from the center of the 
AMR.  Notice that many other dots in the region also 
share the same classification of F.  These groupings of 
regions around the original location of the scenarios 
indicate that similar scenarios will be properly identified 
as intended.   
 One will notice that not all measurements extend 
out the same distance.  The lack of a plot represents the 

distance at which the sensory driver layer started 
identifying a NullTemp, an empty environment.  The 
differences in this and in other characteristics are due to 
inherent differences in the sensor and/or their alignment.   

Figure 5 Scenario mapping of a wall being rotated 
around an AMR every five degrees 

 Next, the usability of the sensory driver layer 
was tested by rotating a wall around the AMR to verify 
that different wall angles could be identified.  A wall was 
rotated every five degrees starting from 30 degrees to -30 
degrees, where the vertical line represents 0 degrees.  One 
can observe from Figure 5, the consistent transition from 
one scenario to the next.  Figure 5 shows that the wall was 
classified as “wall front right 30 degrees,” “wall front 
right 15 degrees,” “wall right,” “wall back right 15 
degrees,” and “wall back right 30 degrees” as the wall is 
rotated around the AMR. 
 The results presented in Figure 4 and Figure 5 
show the adaptability of the sensory driver layer to 
properly identify untrained scenarios by finding the 
nearest trained scenario.   

5.5 Object Morphing 

 The scenario mapping experiment showed the 
effects of varying the location of objects throughout the 
region.  This section presents experiments that vary the 
shapes and sizes of the objects.  In the first experiment a 
block (5 ¼ x 5 ¼ inch), used as an obstacle during the 
learning procedure, was lengthened by two inch 
increments to observe at what length the object would 
start to be recognized as a “wall.”  Figure 6 presents a 
graphical result of the experiment.  The objects were 
placed 11 inches from the center of the AMR.  The object 
was identified as an obstacle from 5 ¼ inches in length 
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to11 ¼ inches, as a “wall far away” from 13 ¼ inches to 
19 ¼ inches, and as a “wall” from 21 ¼ inches to 27 ¼ 
inches.  The dimensions of the objects used during the 
learning process for an obstacle was 5 ¼ inches, while a 
wall was 28 inches in length.  The sensory driver layer 
identified the object as a wall starting at 13 ¼ inches.   

Figure 6 The plot of lengthening a 5 ¼ inch object to a 
27 ¼ inch object in 2 inch increments 

Figure 7 The plot of bending a wall into a corner by 10 
degree increments. 

 In the second experiment, a wall was bent ten 
degrees at a time into a corner.  The results shown in 
Figure 7 shows that the transition from “wall right,” “wall 
right close,” and “corner right” is consistent and smooth.   
 These object morphing experiments show that 
the sensory driver layer can deal with objects of different 
shapes and sizes.  The object mapping and object 
morphing experiments demonstrate that the sensory driver 
layer based on the AEDEC architecture is highly robust 
and highly adaptable to different environmental scenarios, 
even for the untrained scenarios. 

Table 5  Partial table of modified Euclidean distance of 
each scenario respect to the new database of 
scenario templates with two sensors 
malfunctioning from [1] 

6 Sensory Driver Layer’s Ability to 
Compensate for Sensor Malfunctions 

 Recall the experiments performed in sections 5.2 
and 5.3, where one and two sensors were disabled, 
respectively.  With one sensor disabled, it resulted in 15 
errors out of 60; while, with two sensors disabled, it 
resulted in 20 errors out of the same 60.  Normally, the 
problem would be resolved by replacing the 
malfunctioning sensor or sensors and recalibrating the 
parameters.  But what if for some reason the sensors 
could not be replaced.  Then it would require 
reprogramming of the AMR.  The programmer has to 
manually compensate for the malfunctioning sensors by 
recreating the drivers.  This would be a time consuming 
and complex process.  Even worse, if the code depends on 
direct sensor values, much of the code probably has to be 
rewritten to compensate for the bad sensors.  These 
options would not be acceptable in most situations.   
 The sensory driver layer, presented by AEDEC 
architecture, allows for quick and easy method for 
compensating for sensor malfunctions and/or changes by 
simply relearning the scenarios.  In the first experiment, 
AMR with one bad sensor relearned the 60 scenarios.  
Then it was tested, as described in section 5.1, to see if 
any improvements could be made on the 15 errors it had 
before the retraining.  It passed with flying colors, 
improving from 15 errors to none.  It properly identified 
all 60.  This process was extended to the case where two 
sensors were bad, which previously resulted in 20 out of 
60 errors.  Even with two bad sensors, it properly 
identified all 60 scenarios after repeating the learning 
process.  Partial results are given in Table 5.   

7 Real-time Self Correcting Sensory Driver 
Layer 

In section 6, sensory driver layer easily adapted to 
the malfunctioning sensors by relearning the sensory 
driver layer with the malfunctioning sensors.  Although it 

NullTemp FC  F  FRC  FR  FLC  FL  LC
NullTemp 3 1183 206 1010 254 1442 224 742
 FC 1133 9 328 1164 962 1206 834 1842
 F 290 372 3 871 365 1075 269 999
 FRC 999 1261 816 4 252 2348 1200 1738
 FR 286 1056 325 253 3 1707 503 1025
 FLC 1331 1031 942 2218 1562 18 452 1230
 FL 307 799 246 1278 552 476 10 716
 LC 713 1859 916 1720 964 1058 532 12
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is a simple and efficient method, it does require a 
relearning process.  If an AMR can detect and compensate 
for a malfunctioning sensor in real-time it would be that 
much more useful.  A closer comparison of the new 
sensory driver layer to the original resulted in a surprising 
but an obvious result.  The new drivers were almost 
identical to the old, with the exception of the 
malfunctioning sensors.  The net effect of the relearning 
process was equivalent to just dropping the 
malfunctioning sensor from the input sensor vector and 
dropping the malfunctioning sensor’s component from 
each of the previously learned scenarios.  Detection of a 
malfunctioning sensor is surprisingly easy.  During the 
initial boot up procedure, an AMR can make sensor 
readings and compare against its scenarios and just 
disable any sensor with improper readings.   

As long as an AMR can detect a malfunctioning 
sensor, it can ignore that sensor reading and also ignore 
the MED generated by the offending sensor respect to 
each of the scenarios.  In effect, adapting the sensory 
driver layer in real-time to malfunctioning sensor or 
sensors. 

8 Conclusion 
 This paper outlines a methodology of 
autonomously creating a sensory driver layer using a 
scenario based approach.  The supporting analysis 
demonstrated that the resulting drivers are robust and 
adaptable.  It has been shown that the resulting sensory 
driver has real-time discrete error detection and correction 
capabilities.  Without any human intervention, a robust 
sensory driver is created through sensor fusion.  It 
presents an alternative to explicitly creating a sensor 
fusion architecture. 
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