
University of Florida Robot for IEEE Hardware

Competition

Tran, Ken

Member, IEEE

Gainesville, Florida

Langford, Matthew

Member, IEEE

Gainesville, Florida

Abstract—This paper explains the purpose, reasoning and

implementation behind the mechanical and software design of the

robot built by the UF IEEE Hardware Team. The paper will go

over various mechanical systems of the robot. These systems

include: chassis, end-effector, linear rail, and elevator. In

addition, the reasoning and implementation of the particle filter

will also be explained.

I. INTRODUCTION

The competition was based on the unique challenges of the

shipping industry. In particular, the challenges was modeled

after the problems faced in port of Norfolk, Virginia, where the

competition was held.

“The IEEE SoutheastCon 2016 hardware competition is

designed with the intention of simulating modern port

logistics and its related traffic. This IEEE Roads port

provides a challenging game of robotic skill and logistics.

Each team has to successfully detect shipping goods on a

barge (three types of shipping container) which are

strategically placed in a harbor field. Correct shipping

goods then have to be picked up and transported to the

correct shipping zone, and they will be further transported

by the boat, by rail or by truck. Each team will have 5

minutes to complete the task.” [1]

Figure 1: Overview of both field configurations. [1].

The robot has to fit within a 1 foot cube at the start of the

match and expand up to a 20” cube once the match starts.

Once the competition starts, the robot has to be autonomous for

the duration of the match.

“Three zones with shipping containers at the barge are:
A) Generic containers with no QR code, same

size, one color (blue)

B) Containers with QR tag, different colors (blue,

red, green, yellow), 2 different sizes
C) Color containers with QR code, different

colors (blue, red, green, yellow), same size”

Figure 2: Different block zones. [1]

Figure 3: Rail shipping zone. [1]

Figure 4: Truck shipping zone. [1]

II. CHASSIS DESIGN

The chassis was designed to be as compact as possible

while also accommodating for four Hokuyo LiDAR and a

suspension system for the front axle. Everything in the chassis,

except for the motor mount and wheel hubs, were manually

machined to specifications. In addition, the chassis also carried

an Intel NUC 64-bit computer and motor controllers for the

driven wheels. The wheels were Mecanum wheels. These

wheels allowed the robot to move in any direction regardless of

its orientation. This attribute resulted is a great advantage in

this competition, because it allowed the robot to move across in

field in the XY plane while simultaneously being parallel to the

walls with all the blocks. The robot doesn’t have to waste time

reorienting itself in order to move to the next challenge.

That being said, Mecanum wheels also came with a unique

problem, all four wheels must contact the ground fully in order

for the robot to strafe. This problem was brought on because of

Proceedings of the 29th Florida Conference on Recent Advances in Robotics, FCRAR 2016, Miami, Florida, May 12-13, 2016. 158

the summation of torque allows the torque of some wheels to

cancel each other out creating sideways motion. This

summation will yield an undesirable net torque if one of the

wheel don’t provide the necessary torque. This problem was

solved through a combination of a PID controller, which

minimized wheel slips and a suspension system. The

suspension system was essentially a seesaw with springs for

resistances. As one wheel loses contact with the ground, the

opposite wheel forces it back into place ensuring that both

wheels are in contact with the ground.

Another important aspect of the chassis are the four

LiDARs. The four LiDAR allows Shia to find his location on

the course and navigate to the different tasks on the course. The

LiDARs are mounted to the chassis through custom made L-

Brackets. LiDARs are essential for navigation and it’s one of

the element that make Shia special. The use of four LiDARs

opens up lots of options for the software team, the Particle

Filter being one of those options, which allowed the team to

implement a very robust solution that not only applies to this

competition but many more competitions down the road.

Wherever Times is specified, Times Roman or Times New

Roman may be used. If neither is available on your word

processor, please use the font closest in appearance to Times.

Avoid using bit-mapped fonts. True Type 1 or Open Type fonts

are required. Please embed all fonts, in particular symbol fonts,

as well, for math, etc.

Figure 5: Chassis with suspension (left). Fully equipped chassis (right).

III. END-EFFECTOR DESIGN

The end-effectors worked through a combination of

computer vision, servos, and 3D printed parts. The camera

looked at the QR codes and identified the color of the blocks. It

also lines up the end-effector in the correct position and

orientation. Upon activation, each servo moved the paddle that

will hold the block in place. This way each servo “knew” the

color of the block that it is currently holding onto. As the result,

the servo can deactivate once the gripper is over the bin that

corresponds to that color. There were two end-effectors on the

robot. Each of these end-effectors can pick up four blocks for a

combined total of eight blocks.

Figure 6: End-effector. Paddles and in white the orange is the main body. The

red is a block similar t/o the ones used in the match.

Figure 7: Embedded servos (in grey).

In order to accommodate for the large storage capacity, the

end-effectors had to be as compact as possible. Servos were

embedded into the main body to save space. In the contracted

state, the end-effectors folded into each other to adhere to the

size constraints.

Figure 8: End-effectors folding into each other.

IV. LATERAL LINEAR RAIL DESIGN

An opposite drive pulley system allowed the end-effectors to

expand outwards and reach the blocks. The end-effectors are

attached to a set of linear bearings that slides along the outer

rails. The pulley system consisted of a Dynamixel 64-T servo

at one end and a pulley at the other end both are joined by a

timing belt. Each end-effector is attached to opposite side of a

timing belts. This allowed the two end-effectors to move away

from each other when the servo rotates one way and towards

each other when the servo rotates the opposite way. This design

allowed for the extension of the end-effectors to be controlled

through the use of only one servo.

V. ELEVATOR SYSTEM DESIGN

An elevator was necessary because the blocks sections are

all at different heights. The end-effector must be manipulated.

The solution came in the form of a multi-stage elevator system.

There are 2 lifting mechanism (Fig. 9). These mechanisms

allowed the linear rail system to translate along the Z-axis.

Remember that the end-effectors are attached to the rails, so

they move with it too. Each lifting mechanism is powered by a

Dynamixel MX-64T Servo and a complex pulley system.

Proceedings of the 29th Florida Conference on Recent Advances in Robotics, FCRAR 2016, Miami, Florida, May 12-13, 2016. 159

Figure 9: lifting mechanism are circled in red

VI. PARTICLE FILTER

Most teams who competed in the competition used basic

forms of navigation that consisted mostly of ‘dead-reckoning’.

Our approach was much more complex since we had access to

much more complex sensors - namely our four LiDARs. Our

initial goal was to implement a simultaneous localization and

mapping (SLAM) algorithm that would keep track of our exact

location on the field at all times. However, an inherent problem

with our model of LiDAR is that beams that reflect off of black

walls would return data that was almost completely inaccurate

and therefore we were not able to produce correct maps and our

robot was not able to converge onto its position accurately

enough for our goals since almost 75% of the walls of our field

were black. The cause of this inherent error comes from the

physics of how the LiDAR works and that black surfaces cause

weird reflections of the beam that the sensor uses to estimate

range. The solution to this problem was to rely on Bayesian

filtering to estimate the state of the robot rather than relying on

SLAM to pinpoint our actual location precisely. The state of

the robot here refers to the robot’s x position, y position, and its

rotation relative to our predefined origin on the field.

The Bayesian filter implementation we used is called a

particle filter. Our particle filter works on a basic principle:

given an initial guess of the robot's starting state, the particle

filter simulates a LiDAR scan that the robot would see

assuming it were at that estimated location. This simulated scan

is compared to the actual scan coming from the LiDAR and a

weight is assigned to the position that the simulated scan was

taken from - a weight closer to 0 means the simulated scan (and

therefore the position that scan was simulated from) was

inaccurate. Weights closer to 1 imply that the simulated scan

was a more accurate representation of the robot's current sensor

information (and also by extension that the initial guess was a

good representation of the robot's state).

Now let’s say that instead of testing one estimated state of

the robot (one particle, if you will), the filter tests thousands of

estimated states (thousands of particles) with slightly varied

parameters against the actual LiDAR data coming from the

sensors, the weights generated for each of these particles would

produce a distribution of probability of the robot's current state

- the maximum of which being the most likely state of the robot

given the current data. After the top few percentile of particles

are selected, the remaining particles are translated according to

odometry measurements and new particles are generated

around the average position of the particles. This process

allows the particle filter to correct the position estimation that

comes from the integrating the wheel velocity which tends to

drift over time.

The particle filter has the benefit of not need perfect data

since it will converge to the most likely position of the robot,

not necessarily the actual position - which is the best you can

hope for with the kind of LiDAR data we would get from black

walls.

Simulating the LiDAR scans was the most computationally

expensive part of the particle filter. Simulating a scan required

the software to project a ray out from the sensors location and

check for intersections with each wall of the pre-generated

mathematical model of the map. If multiple intersections were

found, the one with the shortest distance from the sensor were

returned. Our implementation of the particle filter was unique

in that instead of trying to do these computations on the CPU,

we used OpenCL to simulate LiDAR data on the GPU. Since

the GPU is a highly parallelized computation device, we were

able to split the job up - instead of one processor handling the

ray tracing, each GPU compute unit handled simulating one

scan from a single particle. Offloading a majority of the

navigation processing to the GPU allowed other mission

critical processes to run and freed up computational resources.

Thanks to our implementation of the particle filter and an

error correction algorithm we developed to run on the incoming

LiDAR scans, we were able to converge to a very accurate

estimation of the robot's state - within one centimeter of the

actual location on the map resulting in superior navigation to

any of our opponents.

VII. REFERENCES

[1]https://docs.google.com/document/d/1ITIsL9fpTk5HKE

JW1NENVrkgfCgXqONWpm0sevzeYmo/edit#heading=h.obp

73v47rneu

Proceedings of the 29th Florida Conference on Recent Advances in Robotics, FCRAR 2016, Miami, Florida, May 12-13, 2016. 160

