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Abstract—This paper explains the purpose, reasoning and 

implementation behind the mechanical and software design of the 

robot built by the UF IEEE Hardware Team. The paper will go 

over various mechanical systems of the robot. These systems 

include: chassis, end-effector, linear rail, and elevator. In 

addition, the reasoning and implementation of the particle filter 

will also be explained. 

I. INTRODUCTION 

The competition was based on the unique challenges of the 

shipping industry. In particular, the challenges was modeled 

after the problems faced in port of Norfolk, Virginia, where the 

competition was held.  

“The IEEE SoutheastCon 2016 hardware competition is 

designed with the intention of simulating modern port 

logistics and its related traffic.  This IEEE Roads port 

provides a challenging game of robotic skill and logistics. 

Each team has to successfully detect shipping goods on a 

barge (three types of shipping container) which are 

strategically placed in a harbor field.  Correct shipping 

goods then have to be picked up and transported to the 

correct shipping zone, and they will be further transported 

by the boat, by rail or by truck. Each team will have 5 

minutes to complete the task.” [1] 

 

 
Figure 1: Overview of both field configurations. [1]. 

 

The robot has to fit within a 1 foot cube at the start of the 

match and expand up to a 20” cube once the match starts.  

Once the competition starts, the robot has to be autonomous for 

the duration of the match.  

 

“Three zones with shipping containers at the barge are:  
A) Generic containers with no QR code, same 

size, one color (blue) 

B) Containers with QR tag, different colors (blue, 

red, green, yellow), 2 different sizes  
C) Color containers with QR code, different 

colors (blue, red, green, yellow), same size” 

 

 
Figure 2: Different block zones. [1]  
 

 
Figure 3: Rail shipping zone. [1] 

 

 
Figure 4: Truck shipping zone. [1] 

 

II. CHASSIS DESIGN 

The chassis was designed to be as compact as possible 

while also accommodating for four Hokuyo LiDAR and a 

suspension system for the front axle. Everything in the chassis, 

except for the motor mount and wheel hubs, were manually 

machined to specifications. In addition, the chassis also carried 

an Intel NUC 64-bit computer and motor controllers for the 

driven wheels. The wheels were Mecanum wheels. These 

wheels allowed the robot to move in any direction regardless of 

its orientation. This attribute resulted is a great advantage in 

this competition, because it allowed the robot to move across in 

field in the XY plane while simultaneously being parallel to the 

walls with all the blocks. The robot doesn’t have to waste time 

reorienting itself in order to move to the next challenge.  

That being said, Mecanum wheels also came with a unique 

problem, all four wheels must contact the ground fully in order 

for the robot to strafe. This problem was brought on because of 
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the summation of torque allows the torque of some wheels to 

cancel each other out creating sideways motion. This 

summation will yield an undesirable net torque if one of the 

wheel don’t provide the necessary torque. This problem was 

solved through a combination of a PID controller, which 

minimized wheel slips and a suspension system. The 

suspension system was essentially a seesaw with springs for 

resistances. As one wheel loses contact with the ground, the 

opposite wheel forces it back into place ensuring that both 

wheels are in contact with the ground.  

Another important aspect of the chassis are the four 

LiDARs. The four LiDAR allows Shia to find his location on 

the course and navigate to the different tasks on the course. The 

LiDARs are mounted to the chassis through custom made L-

Brackets. LiDARs are essential for navigation and it’s one of 

the element that make Shia special. The use of four LiDARs 

opens up lots of options for the software team, the Particle 

Filter being one of those options, which allowed the team to 

implement a very robust solution that not only applies to this 

competition but many more competitions down the road.   

Wherever Times is specified, Times Roman or Times New 

Roman may be used. If neither is available on your word 

processor, please use the font closest in appearance to Times. 

Avoid using bit-mapped fonts. True Type 1 or Open Type fonts 

are required. Please embed all fonts, in particular symbol fonts, 

as well, for math, etc. 

 

 
Figure 5: Chassis with suspension (left). Fully equipped chassis (right). 

 

III. END-EFFECTOR DESIGN 

The end-effectors worked through a combination of 

computer vision, servos, and 3D printed parts. The camera 

looked at the QR codes and identified the color of the blocks. It 

also lines up the end-effector in the correct position and 

orientation. Upon activation, each servo moved the paddle that 

will hold the block in place. This way each servo “knew” the 

color of the block that it is currently holding onto. As the result, 

the servo can deactivate once the gripper is over the bin that 

corresponds to that color. There were two end-effectors on the 

robot. Each of these end-effectors can pick up four blocks for a 

combined total of eight blocks. 

 
Figure 6: End-effector. Paddles and in white the orange is the main body. The 

red is a block similar t/o the ones used in the match. 
 

 
Figure 7: Embedded servos (in grey).   

 

In order to accommodate for the large storage capacity, the 

end-effectors had to be as compact as possible. Servos were 

embedded into the main body to save space. In the contracted 

state, the end-effectors folded into each other to adhere to the 

size constraints.  

 

 
Figure 8: End-effectors folding into each other. 

 

IV. LATERAL LINEAR RAIL DESIGN 

An opposite drive pulley system allowed the end-effectors to 

expand outwards and reach the blocks. The end-effectors are 

attached to a set of linear bearings that slides along the outer 

rails. The pulley system consisted of a Dynamixel 64-T servo 

at one end and a pulley at the other end both are joined by a 

timing belt. Each end-effector is attached to opposite side of a 

timing belts. This allowed the two end-effectors to move away 

from each other when the servo rotates one way and towards 

each other when the servo rotates the opposite way. This design 

allowed for the extension of the end-effectors to be controlled 

through the use of only one servo.  

V. ELEVATOR SYSTEM DESIGN 

An elevator was necessary because the blocks sections are 

all at different heights. The end-effector must be manipulated. 

The solution came in the form of a multi-stage elevator system. 

There are 2 lifting mechanism (Fig. 9). These mechanisms 

allowed the linear rail system to translate along the Z-axis. 

Remember that the end-effectors are attached to the rails, so 

they move with it too. Each lifting mechanism is powered by a 

Dynamixel MX-64T Servo and a complex pulley system. 
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Figure 9: lifting mechanism are circled in red 

VI. PARTICLE FILTER 

Most teams who competed in the competition used basic 

forms of navigation that consisted mostly of ‘dead-reckoning’. 

Our approach was much more complex since we had access to 

much more complex sensors - namely our four LiDARs. Our 

initial goal was to implement a simultaneous localization and 

mapping (SLAM) algorithm that would keep track of our exact 

location on the field at all times. However, an inherent problem 

with our model of LiDAR is that beams that reflect off of black 

walls would return data that was almost completely inaccurate 

and therefore we were not able to produce correct maps and our 

robot was not able to converge onto its position accurately 

enough for our goals since almost 75% of the walls of our field 

were black. The cause of this inherent error comes from the 

physics of how the LiDAR works and that black surfaces cause 

weird reflections of the beam that the sensor uses to estimate 

range. The solution to this problem was to rely on Bayesian 

filtering to estimate the state of the robot rather than relying on 

SLAM to pinpoint our actual location precisely. The state of 

the robot here refers to the robot’s x position, y position, and its 

rotation relative to our predefined origin on the field. 

The Bayesian filter implementation we used is called a 

particle filter. Our particle filter works on a basic principle: 

given an initial guess of the robot's starting state, the particle 

filter simulates a LiDAR scan that the robot would see 

assuming it were at that estimated location. This simulated scan 

is compared to the actual scan coming from the LiDAR and a 

weight is assigned to the position that the simulated scan was 

taken from - a weight closer to 0 means the simulated scan (and 

therefore the position that scan was simulated from) was 

inaccurate. Weights closer to 1 imply that the simulated scan 

was a more accurate representation of the robot's current sensor 

information (and also by extension that the initial guess was a 

good representation of the robot's state). 

Now let’s say that instead of testing one estimated state of 

the robot (one particle, if you will), the filter tests thousands of 

estimated states (thousands of particles) with slightly varied 

parameters against the actual LiDAR data coming from the 

sensors, the weights generated for each of these particles would 

produce a distribution of probability of the robot's current state 

- the maximum of which being the most likely state of the robot 

given the current data. After the top few percentile of particles 

are selected, the remaining particles are translated according to 

odometry measurements and new particles are generated 

around the average position of the particles. This process 

allows the particle filter to correct the position estimation that 

comes from the integrating the wheel velocity which tends to 

drift over time. 

The particle filter has the benefit of not need perfect data 

since it will converge to the most likely position of the robot, 

not necessarily the actual position - which is the best you can 

hope for with the kind of LiDAR data we would get from black 

walls.  

Simulating the LiDAR scans was the most computationally 

expensive part of the particle filter. Simulating a scan required 

the software to project a ray out from the sensors location and 

check for intersections with each wall of the pre-generated 

mathematical model of the map. If multiple intersections were 

found, the one with the shortest distance from the sensor were 

returned. Our implementation of the particle filter was unique 

in that instead of trying to do these computations on the CPU, 

we used OpenCL to simulate LiDAR data on the GPU. Since 

the GPU is a highly parallelized computation device, we were 

able to split the job up - instead of one processor handling the 

ray tracing, each GPU compute unit handled simulating one 

scan from a single particle. Offloading a majority of the 

navigation processing to the GPU allowed other mission 

critical processes to run and freed up computational resources.  

Thanks to our implementation of the particle filter and an 

error correction algorithm we developed to run on the incoming 

LiDAR scans, we were able to converge to a very accurate 

estimation of the robot's state - within one centimeter of the 

actual location on the map resulting in superior navigation to 

any of our opponents. 

VII. REFERENCES 

[1]https://docs.google.com/document/d/1ITIsL9fpTk5HKE

JW1NENVrkgfCgXqONWpm0sevzeYmo/edit#heading=h.obp

73v47rneu

Proceedings of the 29th Florida Conference on Recent Advances in Robotics, FCRAR 2016, Miami, Florida, May 12-13, 2016. 160




