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Abstract

We seek a framework that addresses localization, detec-
tion and recognition of man-made objects in natural-scene
images in a unified manner. We propose to model artificial
structures by dynamic tree-structured belief networks (DTS-
BNs). DTSBNs provide for a distribution over tree struc-
tures that we learn using our Structured Approximation
(SVA) inference algorithm. Furthermore, we propose multi-
scale linear-discriminant analysis (MLDA) as a feature ex-
traction method, which appears well suited for our goals,
as we assume that man-made objects are characterized pri-
marily by geometric regularities and by patches of uniform
color. MLDA extracts edges over a finite range of locations,
orientations and scales, decomposing an image into dyadic
squares. Both the color of dyadic squares and the geometric
properties of extracted edges represent observable input to
our DTSBNs. Experimental results demonstrate that DTS-
BNs, trained on MLDA features, offer a viable solution for
detection of artificial structures in natural-scene images.

1. Introduction

Generally speaking, recognition of man-made objects in
natural-scene images entails three related components: (1)
localization, (2) detection and, finally, (3) recognition of ob-
jects. A number of factors contribute to the difficulty of
this problem including variations in camera quality and po-
sition, wide-ranging illumination conditions, and extreme
scene diversity. We seek a framework that is sufficiently ex-
pressive to cope with this uncertainty, and jointly addresses
the three sub-problems in a unified manner. Thus, we re-
sort to a probabilistic framework, which offers a principled
solution to the outlined challenges.

For the purposes of this paper, we assume that man-
made objects are characterized primarily by geometric reg-
ularities, and that artificial structures are rigid and com-
posed of smaller, uniformly colored sub-parts. In the lit-
erature, several techniques for extraction and subsequent

statistical modeling of geometric regularities in images ex-
ist. For example, in [1] the authors examine the problem
of grouping line segments, extracted from images of natu-
ral scenes, into geometrically significant components useful
for image interpretation. Their algorithm groups extracted
edges into larger geometric structures using geometric re-
lations of collinearity, parallelness, relative angle andspa-
tial proximity. Most importantly, they represent extracted
lines as nodes of a graph, where the geometric relations
between the lines are links in this graph. However, their
graph structure accounts only for nearest neighbor relations,
failing to capture more complex artificial structures. Re-
cently, in [2] a multiscale graphical model – namely, the
tree-structured belief network (TSBN) – has been used for
detecting man-made structures in natural-scene images. Re-
ported work on TSBNs demonstrates the powerful expres-
siveness of TSBNs, as they represent pixel neighborhoods
of varying sizes, and the efficiency of their linear-time in-
ference algorithms [3,4]. Despite these successes, the fixed
structure of nodes in TSBNs gives rise to “blocky” seg-
mentations. Building off of the prior work, in this paper,
we propose to model man-made objects by dynamic tree-
structured belief networks (DTSBNs) [5, 6]. By providing
a distribution over tree structures, as illustrated in Fig.1,
DTSBNs alleviate the shortcomings of TSBNs.

In [5], we showed that it was possible to assign phys-
ical meaning to DTSBN structures, such that root nodes
model whole objects, while parent-child connections en-
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Figure 1. (a) TSBN; (b) DTSBN as in [5]; (c)
our generalized-structure DTSBN.



code component-subcomponent relationships. Therefore,
within the DTSBN framework, the treatment and recog-
nition of object parts requires no additional training, but
merely a particular interpretation of the tree/subtree struc-
ture. This property is very important for achieving our
goal, as natural-scene images, for the most part, con-
tain clutter and partially occluded object appearances.
Thus, in the case of occlusion the recognition of an ob-
ject part can lead to ultimate recognition of that object as a
whole.

In this paper, we introduce even greater flexibility in the
structure of DTSBNs, as compared to previously discussed
models in [5, 6]. To accommodate for the specifics of our
feature extraction, we allow for both leaf nodes and roots
to occur at various layers, as illustrated in Fig. 1c. More-
over, we propagate observable information to higher levels
of DTSBNs (black nodes in Fig. 1c).

Besides our model choice, the selection of a sufficiently
discriminative set of image features is also critical for suc-
cessful artificial-object detection. With respect to the afore-
mentioned assumptions on man-made object appearances,
we seek an efficient edge extraction method. In the litera-
ture, there are numerous heuristic solutions based on using
local operators such as wavelets or Gabor filters. However,
recent findings on human vision and natural image statis-
tics report that cortical cells are not only highly sensitive to
the location and scale, but also to the orientation and elonga-
tion of stimuli [7]. Moreover, the basis elements which best
“sparsify” natural scenes are highly direction-specific, un-
like wavelets. Finally, it is well known that wavelets do not
economically represent even straight edges, let alone more
complicated geometrical structures in images. Therefore,
we suggest that there is a need for new image analysis meth-
ods that should exhibit, aside from the multiscale and local-
ization properties of wavelets, also, characteristics that ac-
count for concepts beyond the wavelet framework. Herein,
we contemplate that both geometric and color cues should
be taken into account for optimal discrimination of man-
made objects from other image classes. Thus, we propose
multiscale linear-discriminant analysis (MLDA), which en-
codes both color and texture through a dynamic represen-
tation of image details [8]. MLDA extracts edges over a fi-
nite range of locations, orientations and scales, decompos-
ing an image into dyadic squares of uniform color. Thus,
MLDA appears perfectly suited for our goals, and in agree-
ment with our assumptions that man-made objects exhibit
geometric regularities and contain patches of uniform color.
MLDA features represent the observable inputs to our DTS-
BNs.

Comparative studies with “standard” modeling
paradigms (e.g., as in [2, 4, 6]) show that allowing
for the more flexible structure of DTSBNs yields im-
proved performance. While we defer discussion of ultimate

object recognition for a forthcoming paper, for space rea-
sons, herein, we address localization and detection of
man-made objects; that is, we present DTSBN-based im-
age segmentation in unsupervised settings. Our exper-
imental results demonstrate that DTSBNs, modeling
MLDA features, capture important structural informa-
tion about man-made objects, and, therefore, offer a viable
solution for artificial-object detection in natural-sceneim-
ages.

2. Dynamic Trees

We define a DTSBN as a directed graphical model with
V nodes, as depicted in Fig. 1c, representing both hidden
(white) and observable (black) random variables. Below, we
first introduce the set of hidden random variables.

The network connectivity is represented by a matrixZ,
where entryzij=1 if there is a connection between nodesi

andj. We define the distribution over tree connectivity as

P (Z) =
∏

i,j∈V

[γij ]
zij , (1)

whereγij is the probability ofi being the child ofj.
Each nodei in the graph is characterized by the posi-

tion ri of the object part it represents relative to the posi-
tion of its parentrj , thereby explicitly expressing geomet-
ric component-subcomponent relationships. The joint prob-
ability of R={ri}i∈V is given by

P (R|Z)=
∏

i,j∈V

[

exp
(

− 1
2 (ri−rj)

T Σ−1
ij (ri−rj)

)

2π|Σij |
1

2

]zij

(2)

whereΣij denotes the covariance matrix representing the
size of object parts at various scales.

Further, each nodei is characterized by an image class,
represented by an indicator random variable,xk

i , such that
xk

i =1 if node i is labeled as image classk. For the pur-
poses of artificial/natural object detection, we define only
two possible classes forming a finite class setM . The la-
belk of nodei is conditioned on the image classl of its par-
entj and is given by conditional probability tablesP kl

ij . The
joint probability ofX={xk

i }i∈V can be expressed as

P (X |Z) =
∏

i,j∈V

∏

k,l∈M

[

P kl
ij

]xk
i xl

jzij
. (3)

The generative property of a DTSBN stems from treat-
ing observable random variablesyi conditionally indepen-
dent given the hidden variables – in particular, image-class
indicatorsxk

i (see Fig. 1). Thus, we assume that the image
class of nodei determines (generates) the likelihood of ob-
servableyi, such that the joint distribution ofY ={yi}i∈V



is given by,

P (Y |X) =
∏

i∈V

∏

k∈M

[

p(yi|x
k
i )

]xk
i , (4)

wherep(yi|x
k
i =1) is modeled as aG-component mixture

of Gaussians.
Finally, our DTSBN is fully specified by the joint distri-

butionP (Z, X, R, Y )=P (Z)P (X |Z)P (R|Z)P (Y |X).

3. Probabilistic Inference and Learning

Due to the complexity of DTSBNs, the exact compu-
tation of P (X |Y ), required, for example, for Bayesian
pixel labeling of artificial and natural image classes, is in-
tractable. Therefore, to computeP (X |Y ), we employ our
Structured Variational Approximation (SVA), thoroughly
discussed in [5]. SVA relaxes the poorly justified indepen-
dence assumptions in prior work [6], such that SVA takes
into account the statistical dependence between node po-
sitions and the model’s structure and, thus, achieves faster
convergence by an order of magnitude over currently avail-
able algorithms.

Variational-approximation inference methods can be
viewed as minimizing a convex cost function known as
free energy, which measures the accuracy of an approx-
imate probability distribution [9]. Essentially, the idea
is to approximate the true intractable posterior distribu-
tion, in our caseP (Z, X, R|Y ), by a simpler distribu-
tion Q(Z, X, R) closest toP (Z, X, R|Y ), by minimizing
the free energyJ(Q, P ):

J(Q, P ) = log P (Y ) − KL(Q‖P ) , (5)

where Q denotes a variational distribution approxi-
mating P (Z, X, R|Y ) and KL(Q‖P ) denotes their
Kullback-Leibler divergence.

We constrain the solution of the variational distribution
to the formQ=Q(Z)Q(X |Z)Q(R|Z), which enforces the
aforementioned assumptions that both state-indicator vari-
ablesX and position variablesR should be statistically de-
pendent on the tree connectivityZ. The forms of the ap-
proximating distributions are defined as follows:

Q(Z)=
∏

i,j∈V

[δij ]
zij , (6)

Q(X |Z)=
∏

i,j∈V

∏

k,l∈M

[

Qkl
ij

]xk
i xl

jzij
, (7)

Q(R|Z)=
∏

i,j∈V

[

exp
(

−1
2 (ri−µj)

T Ω−1
ij (ri−µj)

)

2π|Ωij |
1

2

]zij

(8)

whereδij corresponds toγij , Qkl
ij is analogous toP kl

ij , and
µj andΩij are the mean and the covariance of the parentj

position, respectively.

Minimizing J(Q, P ) with respect to the model parame-
ters, we derive the update equations for iterative computa-
tion of the variational distributionQ. The full derivation of
the SVA update equations is given in [5]. Herein, for space
reasons, we omit the details and continue with a brief sum-
mary of learning.

SVA presumes that the parameters that character-
ize P (Z, X, R, Y ) are available. In order to learn these
parameters, initially, we build a balanced TSBN. Then, us-
ing Pearl’s message passing scheme [3], we learnP kl

ij . For
learning the parameters of a mixture of Gaussians, we em-
ploy the EM algorithm [5]. Further, we initializeγij to
be uniform across all possible parents ofi. We equate
Σij to the area of the corresponding dyadic square. Fi-
nally, we set all the variational parameters to be equal
to the corresponding parameters ofP (Z, X, R, Y ). Af-
ter initialization, we optimize the parameters ofQ ac-
cording to the update equations, as reported in [5]. Once
optimized, δ′s specify the most likely tree connectiv-
ity. Unlike in [6], for each nodei, we find the maximum
probability δij , ∀j∈V , and establish only that connec-
tion, deleting other candidate connections with lower
probability. In this manner, we build a forest of new DTS-
BNs that are not balanced, yet preserve their tree struc-
ture. Finally, we close the learning loop, again performing
Pearl’s message passing scheme for each dynamic sub-
tree.

4. Feature Extraction

Assuming that edges, belonging to artificial objects, ex-
hibit a high degree of parallelism/collinearity or combineto
yield perpendicular junctions, it is reasonable to investigate
spatial interrelationships of extracted edges in the imageas
cues for man-made object detection. For this purpose, we
employ multiscale linear-discriminant analysis (MLDA),
thoroughly discussed in [8]. For completeness, herein, we
briefly describe the main concepts behind MLDA.

The MLDA atom w is a piecewise constant function
on either side of a linear discriminantd, which divides a
square into two regions, as illustrated in Fig. 2a. A dis-
criminantd is characterized by the maximum Mahalanobis
distancemaxd{(µ0−µ1)

T (Σ0+Σ1)
−1(µ0−µ1)}, whereµ

and Σ denote the RGB mean and covariance of the two
regions. Decreasing the size of squares, we achieve better
piece-wise linear approximation of curves in the image, as
illustrated in Fig. 2b. Thus, the image can be decomposed
into dyadic squares, forming a MLDA treeT , as depicted
in Fig. 2c. The expansion ofT is controlled by two compet-
ing criteria:accuracyandparsimony. The tree optimization
procedure yields anincompletetree structure, since atom
generation stops at different scales for different locations in
the image [8].
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Figure 2. (a) MLDA atom; (b) dyadic decom-
position; (c) corresponding MLDA tree.

To examine geometric properties of the extracted dis-
criminantsd, we first compute histograms over angles∠d,
measured from thex axis, for overlapping windowsWi cen-
tered at MLDA atomswi. The magnitude of the histogram,
Eδ, for the δ-th bin, δ∈[1, ∆], is smoothed using a Gaus-
sian kernel function to alleviate the problem of hard bin-
ning of data. IfWi contains a structured image region then
a few bins will have significant peaks in the histogram in
comparison to the other bins. To measure the “spikiness”
of the histogram, as an indicator of artificial structures in
Wi, we compute the heaved central moment of then-th or-
der,Sn, as

Sn =
P

∆

δ=1
(Eδ−Ē)nH(Eδ−Ē)

P

∆

δ=1
(Eδ−Ē)H(Eδ−Ē)

, n ≥ 2 , (9)

whereĒ= 1
∆

∑∆
δ=1 Eδ is the mean magnitude of each his-

togram andH(x) is a unit step function. Each bin value
above the mean is linearly weighted by its distance from
the mean so that the peaks far away from the mean con-
tribute more to the proposed measure of “structuredness.”

Then, to capture interscale and intrascale geomet-
ric properties, we introduce another two parameters. For
each MLDA atomwi with discriminantd, we compute
gδ=| cos 2(∠d−δ)|, whereδ denotes a bin in the histogram
of windowWi. Similarly, we computeGδ=| cos 2(∠d−δ)|,
where, now,δ denotes a bin in the histogram of win-
dow Wj , centered at the MLDA atomwj , the parent of
wi. While both sets of parameters,gδ andGδ, point out ei-
ther parallel/collinear structures or near right-angle junc-
tions, gδ accounts for relationships among discriminants
belonging to one scale, whereasGδ informs on continu-
ity of geometric properties through scales.

5. Experiments

Herein, we present artificial-object detection using TS-
BNs and DTSBNs. The test data set consists of 100
256 × 256 natural-scene images with both natural and
man-made objects, captured at medium to long distances
from a ground-level camera, as illustrated in Fig. 3. Hav-
ing computed the MLDA image representation, the ground
truth was generated by hand-labeling each terminal MLDA

atom as thenatural or artificial image class. Despite quan-
tization noise in classification, this coarse labeling was suf-
ficient for our purposes, as we are interested in locating
structured image regions without explicitly detecting ob-
ject boundaries. Training of TSBNs and DTSBNs for the
natural and artificial image classes was conducted on a dis-
tinct set of 120256 × 256 images for each class. We em-
ployed Pearl’s message passing scheme and our SVA as
inference algorithms for learning TSBN and DTSBN pa-
rameters, respectively. The number of Gaussians (i.e. four)
in the mixture model of likelihoodsp(yi|x

k
i ) was opti-

mized using cross-validation. The cost of computing inter-
scale and intrascale geometric features,gδ andGδ, was re-
duced by accounting only for the binδ with the largest
magnitudeEδ. Also, we used only the second order cen-
tral moment S2, which proved sufficient. The number
of MLDA terminal nodes was set to 1000 for each im-
age, which provided for sufficiently precise feature extrac-
tion at reasonable computational cost.

We experimented with two strategies regarding the ob-
servable variables of TSBNs and DTSBNs. In the first ap-
proach, to each nodei of a model, we assign an observable
vectoryi={Ē, S2, gδ, Gδ, µ0, µ1} (see Fig. 1c). In the sec-
ond approach, we do not propagate observable information
to higher levels of the generative model. Rather, we form
a long vector of the parameters of all MLDA atoms up the
MLDA tree, following parent-child paths, and assign that
vector toyi of the leaf nodes, only (see Fig. 1a and 1b).
Note that for TSBNs and “standard” DTSBNs, the MLDA
tree is constructed without pruning. To emphasize the dif-
ference in the treatment of observable variables, we denote
the models with observables propagated to higher levels as
TSBN↑ and DTSBN↑, and the models with only terminal-
node observables without arrows.

(a) (b) (c)

Figure 3. Artificial structure detection: (a)
original images; (b) MLDA representation;
and (c) MLDA atoms classified as artificial.



Several examples of natural/artificial ML classification
results are demonstrated in Fig. 3. The marked MLDA
atoms represent image regions classified as artificial. In
Fig. 4, we report the confusion matrices of ML classifica-
tion results for 100000 terminal MLDA atoms in 100 test
images using DTSBN↑, DTSBN, TSBN↑, and TSBN mod-
els. The columns contain the ground truth, while the rows
contain the detection results. The number of MLDA atoms
that belong to natural and artificial image classes is 72345
and 27655, respectively. For a more complete comparison
of detection performance, in Fig. 5, we show ROC curves
for the four models, obtained for various decision bound-
aries between the likelihoods of natural and artificial image
classes. Note that DTSBN↑ models outperform the other
three models.

6. Conclusion

In this paper, we have successfully applied the DTSBN↑
model, trained on MLDA features, for man-made structure
detection in natural-scene images. Through a set of experi-
ments we have demonstrated that: (1) DTSBNs outperforms
TSBNs; (2) the propagation of observable information to
higher levels of generative models improves their ability
to capture complex object appearances; and (3) the pro-
posed generalized-structure DTSBN↑ models are superior
to “standard” DTSBNs with respect to modeling spatial de-
pendencies among image features.

The results presented in this paper raise a number of in-
teresting points for further research. The capability of DTS-
BNs to perform unsupervised image segmentation into ar-
tificial and natural image regions can be used for localiza-
tion and detection of man-made objects. Furthermore, DTS-
BNs, being parameterized graphical models, can be trained
on those segmented regions using the SVA inference algo-
rithm [5]. After a sufficiently large number of training sam-
ples, we would arrive at accurate statistical models of object
appearances. Thus learned DTSBNs could be, then, used for
Bayesian image classification, whereby we could perform

A N
A 26411 5787
N 1244 66558

DTSBN

A N
A 26327 6511
N 1328 65834

TSBN

A N
A 26548 4340
N 1107 68005

DTSBN↑

A N
A 26272 6149
N 1383 66196

TSBN↑

Figure 4. Confusion matrices for ML classifi-
cation of artificial (A) and natural (N) image
classes; columns contain the ground truth.

man-made object recognition. Note that in the outlined pro-
cedure there is neither need for preparation of training sam-
ples nor for specification of the objects of interest. There-
fore, DTSBNs could provide a unified framework for unsu-
pervised unknown object registration – a principal topic of
our future research.
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