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Abstract statistical modeling of geometric regularities in images e

o ist. For example, in [1] the authors examine the problem

~ We seek a framework that addresses localization, detecf grouping line segments, extracted from images of natu-
tion and recognition of man-made objects in natural-scene 5| scenes, into geometrically significant componentsuisef

images in a unified manner. We propose to model artificial for jmage interpretation. Their algorithm groups extracte
structures by dynamic tree-structured belief networks§bT edges into larger geometric structures using geometric re-

BNs). DTSBNs provide. for a distribution over tree Struc- |ations of collinearity, parallelness, relative angle apa-
tures that we learn using our Structured Approximation iig) proximity. Most importantly, they represent extratte
(SVA) inference algorithm. Furthermore, we propose multi- |ines as nodes of a graph, where the geometric relations
scale linear-discriminant analysis (MLDA) as a feature ex- petween the lines are links in this graph. However, their

traction method, which appears well suited for our goals, graph structure accounts only for nearest neighbor relstio
as we assume that man-made objects are characterized prifajling to capture more complex artificial structures. Re-

marily by geometric regularities and by patches of uniform cently, in [2] a multiscale graphical model — namely, the
color. MLDA extracts edges over a finite range of locations, iree-structured belief network (TSBN) — has been used for
orientations and scales, decomposing an image into dyadiCqetecting man-made structures in natural-scene images. Re
squares. Both the color of dyadic squares and the geometricported work on TSBNs demonstrates the powerful expres-
properties of extracted edges represent observable iput t gjeness of TSBNS, as they represent pixel neighborhoods
our DTSBNs. Experimental results demonstrate that DTS-of yarying sizes, and the efficiency of their linear-time in-
BN, trained on MLDA features, offer a viable solution for terence algorithms [3, 4]. Despite these successes, the fixe
detection of artificial structures in natural-scene images structure of nodes in TSBNs gives rise to “blocky” seg-
mentations. Building off of the prior work, in this paper,
) we propose to model man-made objects by dynamic tree-
1. Introduction structured belief networks (DTSBNS) [5, 6]. By providing
a distribution over tree structures, as illustrated in Hig.

Generally speaking, recognition of man-made objects in DTSBNSs alleviate the shortcomings of TSBN.

natural-scene images entails three related componeits: (1
localization, (2) detection and, finally, (3) recognitidrob- In [5], we showed that it was possible to assign phys-
jects. A number of factors contribute to the difficulty of ical meaning to DTSBN structures, such that root nodes
this problem including variations in camera quality and po- model whole objects, while parent-child connections en-
sition, wide-ranging illumination conditions, and extrem -
scene diversity. We seek a framework that is sufficiently ex- -~
pressive to cope with this uncertainty, and jointly addesss .
the three sub-problems in a unified manner. Thus, we re- -
sort to a probabilistic framework, which offers a princigle
solution to the outlined challenges.

For the purposes of this paper, we assume that man-
made objects are characterized primarily by geometric reg-
ularities, and that artificial structures are rigid and com-
posed of smaller, uniformly colored sub-parts. In the lit-
erature, several techniques for extraction and subsequent

(b) ©

Figure 1. (a) TSBN; (b) DTSBN as in [5]; (c)
our generalized-structure DTSBN.




code component-subcomponent relationships. Thereforepbject recognition for a forthcoming paper, for space rea-
within the DTSBN framework, the treatment and recog- sons, herein, we address localization and detection of
nition of object parts requires no additional training, but man-made objects; that is, we present DTSBN-based im-
merely a particular interpretation of the tree/subtreacstr  age segmentation in unsupervised settings. Our exper-
ture. This property is very important for achieving our imental results demonstrate that DTSBNs, modeling
goal, as natural-scene images, for the most part, con-MLDA features, capture important structural informa-
tain clutter and partially occluded object appearances.tion about man-made objects, and, therefore, offer a viable
Thus, in the case of occlusion the recognition of an ob- solution for artificial-object detection in natural-scdme

ject part can lead to ultimate recognition of that object as a ages.

whole.

In this paper, we introduce even greater flexibility in the 2, Dynamic Trees
structure of DTSBNSs, as compared to previously discussed
models in [5, 6]. To accommodate for the specifics of our ~ We define a DTSBN as a directed graphical model with
feature extraction, we allow for both leaf nodes and roots V' nodes, as depicted in Fig. 1c, representing both hidden
to occur at various layers, as illustrated in Fig. 1c. More- (white) and observable (black) random variables. Below, we
over, we propagate observable information to higher levelsfirst introduce the set of hidden random variables.
of DTSBNSs (black nodes in Fig. 1c). The network connectivity is represented by a maffix

Besides our model choice, the selection of a sufficiently Where entryz;;=1 if there is a connection between nodes
discriminative set of image features is also critical foc-su  and;. We define the distribution over tree connectivity as
cessful artificial-object detection. With respect to theraf
mentioned assumptions on man-made object appearances, P(Z) = H [vis 7 (1)
we seek an efficient edge extraction method. In the litera- i,jEV
ture, there are numerous heuristic solutions based on usin
local operators such as wavelets or Gabor filters. However,
recent findings on human vision and natural image statis-
tics report that cortical cells are not only highly sensitto
the location and scale, but also to the orientation and @ong
tion of stimuli [7]. Moreover, the basis elements which bes
“sparsify” natural scenes are highly direction-specifie; u
like wavelets. Finally, it is well known that wavelets do not 1 Tl Zij
economically represent even straight edges, let alone more p _ exp (—5(ri—r))" 55 (ri—r))

! ! & (rRI2)= 1] 1 ©)

complicated geometrical structures in images. Therefore, 27|32
we suggest that there is a need for new image analysis meth-
ods that should exhibit, aside from the multiscale and local whereX;; denotes the covariance matrix representing the
ization properties of wavelets, also, characteristics dca size of object parts at various scales.
count for concepts beyond the wavelet framework. Herein,  Further, each nodgis characterized by an image class,
we contemplate that both geometric and color cues shouldrepresented by an indicator random variabfg, such that
be taken into account for optimal discrimination of man- x*=1 if node i is labeled as image clags For the pur-
made objects from other image classes. Thus, we propos@oses of artificial/natural object detection, we define only
multiscale linear-discriminant analysis (MLDA), which-en  two possible classes forming a finite class &£t The la-
codes both color and texture through a dynamic represen-el k of nodei is conditioned on the image claksf its par-
tation of image details [8]. MLDA extracts edges over a fi- entj and is given by conditional probability tablP;“ The
nite range of locations, orientations and scales, decomposijoint probability of X = {a¥};ev can be expressed as
ing an image into dyadic squares of uniform color. Thus,
MLDA appears perfectly suited for our goals, and in agree- kl Falziy
ment witF:1pour aF;sumpt)i/ons that man—r%ade objects egxhibit P(X|2) = H H P ' 3)
geometric regularities and contain patches of uniformicolo

MLDA features represent the observable inputs to our DTS- The generative property of a DTSBN stems from treat-
BNs. ing observable random variablgs conditionally indepen-
Comparative studies with “standard” modeling dent given the hidden variables — in particular, imagesclas
paradigms (e.g., as in [2, 4, 6]) show that allowing indicatorsz* (see Fig. 1). Thus, we assume that the image
for the more flexible structure of DTSBNs yields im- class of node determines (generates) the likelihood of ob-
proved performance. While we defer discussion of ultimate servabley;, such that the joint distribution df ={y; };cv

%vherefyw is the probability ofi being the child ofj.

Each node in the graph is characterized by the posi-
tion r; of the object part it represents relative to the posi-
tion of its parentr;, thereby explicitly expressing geomet-
¢ ric component-subcomponentrelationships. The joint prob
ability of R={r;};cv is given by
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is given by, Minimizing J(Q, P) with respect to the model parame-
ters, we derive the update equations for iterative computa-
PY|X)= H H (yil2F)] o 4) tion of the variational distributio). The full derivation of
i€V keM the SVA update equations is given in [5]. Herein, for space
reasons, we omit the details and continue with a brief sum-
mary of learning.

SVA presumes that the parameters that character-
ize P(Z,X,R,Y) are available. In order to learn these
parameters, initially, we build a balanced TSBN. Then, us-
ing Pearl's message passing scheme [3], we Id?g@‘m For
learning the parameters of a mixture of Gaussians, we em-
ploy the EM algorithm [5]. Further, we initialize;; to
be uniform across all possible parents iofWe equate
¥;; to the area of the corresponding dyadic square. Fi-
nally, we set all the variational parameters to be equal
to the corresponding parameters B{Z, X, R,Y). Af-
ter initialization, we optimize the parameters §f ac-
cording to the update equations, as reported in [5]. Once

wherep(y;|z¥=1) is modeled as &-component mixture
of Gaussians.

Finally, our DTSBN is fully specified by the joint distri-
butionP(Z, X, R,Y)=P(Z)P(X|Z)P(R|Z)P(Y|X).

3. Probabilistic Inference and Learning

Due to the complexity of DTSBNSs, the exact compu-
tation of P(X|Y), required, for example, for Bayesian
pixel labeling of artificial and natural image classes, is in
tractable. Therefore, to compuf® X|Y’), we employ our
Structured Variational Approximation (SVA), thoroughly
discussed in [5]. SVA relaxes the poorly justified indepen-
dence assumptions in prior work [6], such that SVA takes =~ " , ) . )
into account the statistical dependence between node po optlmlz_ed,_é s specify the mo_st I|ke_Iy tree con_nect|v—
sitions and the model’s structure and, thus, achievesrfaste'- Unlike in [6], for each node, we find the maximum

convergence by an order of magnitude over currently avail- probability 6;;, Vj€V, and establish only that connec-
able algorithms. tion, deleting other candidate connections with lower

Variational-approximation inference methods can be probability. In this manner, we build a forest of_ new DTS-
viewed as minimizing a convex cost function known as BNS that are not balanced, yet preserve their tree struc-
free energy which measures the accuracy of an approx- ture. !:mally, we close t_he learning loop, again perfor_mmg
imate probability distribution [9]. Essentially, the idea Pearl's message passing scheme for each dynamic sub-
is to approximate the true intractable posterior distribu- ree.
tion, in our caseP(Z,X,R|Y), by a simpler distribu-
tion Q(Z, X, R) closest toP(Z, X, R|Y"), by minimizing 4. Feature Extraction
the free energy (Q, P):

Assuming that edges, belonging to artificial objects, ex-
hibit a high degree of parallelism/collinearity or combine
where  denotes a variational distribution approxi- Yi€ld perpendicular junctions, it is reasonable to ingit
mating P(Z,X,R|Y) and KL(Q|P) denotes their spatial |nterrelat|onsh|p_s of extrac?ed edges in the imeeye
Kullback-Leibler divergence. cues for mar)—made_object .detfacyon. For thIS. purpose, we

We constrain the solution of the variational distribution €MPIloy multiscale linear-discriminant analysis (MLDA),
to the formQ=Q(2)Q(X|2)Q(R|Z), which enforces the thproughly d_|scussed in [8]. For comp!eteness, herein, we
aforementioned assumptions that both state-indicatér var Priefly describe the main concepts behind MLDA.

J(Q,P) =log P(Y) = KL(Q| P) , ()

ablesX and position variable® should be statistically de- The MLDA atomw is a piecewise constant function
pendent on the tree connectivi. The forms of the ap-  ©n either side of a linear discriminanf which divides a
proximating distributions are defined as follows: square into two regions, as illustrated in Fig. 2a. A dis-
criminantd is characterized by the maximum Mahalanobis
Q(Z)= H (6577, (6) distancemaxq{ (1o—p1)7 (Zo+21) " (wo—p1)}, Wherep
ijev and ¥ denote the RGB mean and covariance of the two
Q(X|2)= H H m alzy ) regions. Decreasing the size of squares, we achieve better
’ piece-wise linear approximation of curves in the image, as
HIEV IIEM L S iy illustrated in Fig. 2b. Thus, the image can be decomposed
Q(R|Z)= H exp (—5(ri—p)) Qlij (ri—py)) ®) into dyadic squares, forming a MLDA treE, as depicted
iGev 27|52 in Fig. 2c. The expansion @f is controlled by two compet-

ing criteria:accuracyandparsimony The tree optimization
whered;; corresponds tg;;, ij is analogous td9£l, and procedure yields amcompletetree structure, since atom
u; andQ;; are the mean and the covariance of the pajent generation stops at different scales for different locatim

position, respectively. the image [8].



atom as thenatural or artificial image class. Despite quan-

M1 ' . tization noise in classification, this coarse labeling wafs s

d / ficient for our purposes, as we are interested in locating

3 \Q SN structured image regions without explicitly detecting ob-

! ject boundaries. Training of TSBNs and DTSBNSs for the
Mo s 6/ o o
oftol / natural and artificial image classes was conducted on a dis

(a) (b) () tinct set of 120256 x 256 images for each class. We em-

Figure 2. (a) MLDA atom; (b) dyadic decom- ployed Pearl’'s message passing scheme and our SVA as

inference algorithms for learning TSBN and DTSBN pa-
rameters, respectively. The number of Gaussians (i.e) four
in the mixture model of likelihood$(y;|=*) was opti-

To examine geometric properties of the extracted dis- mized using cross-validation. The cost of computing inter-
criminantsd, we first compute histograms over anglés, scale and intrascale geometric featuggsand Gy, was re-
measured from the axis, for overlapping window#’; cen-  duced by accounting only for the bif with the largest
tered at MLDA atomsy;. The magnitude of the histogram, magnitudeE;. Also, we used only the second order cen-
Es, for the 6-th bin, 6€[1, A, is smoothed using a Gaus- tral momentS?, which proved sufficient. The number
sian kernel function to alleviate the problem of hard bin- of MLDA terminal nodes was set to 1000 for each im-

ning of data. Ifi¥; contains a structured image region then age, which provided for sufficiently precise feature extrac
a few bins will have significant peaks in the histogram in tjon at reasonable computational cost.

comparison to the other bins. To measure the “spikiness”
of the histogram, as an indicator of artificial structures in
W;, we compute the heaved central moment ofitkté or-
der,S, as

position; (c) corresponding MLDA tree.

We experimented with two strategies regarding the ob-
servable variables of TSBNs and DTSBNSs. In the first ap-
proach, to each nodeof a model, we assign an observable
vectory;={E, S, d;, Gs, 110, 111 } (See Fig. 1c). In the sec-
ond approach, we do not propagate observable information
J 9) to higher levels of the generative model. Rather, we form

a long vector of the parameters of all MLDA atoms up the
where E=+ S5 | Es is the mean magnitude of each his- MLDA tree, following parent-child paths, and assign that
togram andH (z) is a unit step function. Each bin value vector toy; of the leaf nodes, only (see Fig. 1a and 1b).
above the mean is linearly weighted by its distance from Note that for TSBNs and “standard” DTSBNs, the MLDA
the mean so that the peaks far away from the mean con4ree is constructed without pruning. To emphasize the dif-
tribute more to the proposed measure of “structuredness.” ference in the treatment of observable variables, we denote

Then, to capture interscale and intrascale geomet-the models with observables propagated to higher levels as
ric properties, we introduce another two parameters. ForTSBNT and DTSBN, and the models with only terminal-
each MLDA atomw; with discriminantd, we compute  node observables without arrows.
gs=| cos2(£d—0)|, wheres denotes a bin in the histogram = ' 3
of window W;. Similarly, we comput&;s=| cos 2(£d—4d)|,
where, now,§ denotes a bin in the histogram of win-
dow W;, centered at the MLDA atonw;, the parent of
w;. While both sets of parameters;, andGs, point out ei-
ther parallel/collinear structures or near right-anglecju
tions, g; accounts for relationships among discriminants
belonging to one scale, where@&s informs on continu-
ity of geometric properties through scales.

— ZA: (E 7E)"H(E 7E)
s= Z(;?:ll(gafE)H(E;,E) ,n>2

5. Experiments

Herein, we present artificial-object detection using TS-
BNs and DTSBNs. The test data set consists of 100
256 x 256 natural-scene images with both natural and
man-made objects, captured at medium to long distances
from a ground-level camera, as illustrated in Fig. 3. Hav-
ing computed the MLDA image representation, the ground
truth was generated by hand-labeling each terminal MLDA

Figure 3. Artificial structure detection: (a)
original images; (b) MLDA representation;
and (c) MLDA atoms classified as artificial.




Several examples of natural/artificial ML classification man-made object recognition. Note that in the outlined pro-
results are demonstrated in Fig. 3. The marked MLDA cedure there is neither need for preparation of training-sam
atoms represent image regions classified as artificial. Inples nor for specification of the objects of interest. There-
Fig. 4, we report the confusion matrices of ML classifica- fore, DTSBNs could provide a unified framework for unsu-
tion results for 100000 terminal MLDA atoms in 100 test pervised unknown object registration — a principal topic of
images using DTSBN DTSBN, TSBN;, and TSBN mod-  our future research.
els. The columns contain the ground truth, while the rows
contain the detection results. The number of MLDA atoms References
that belong to natural and artificial image classes is 72345
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Figure 4. Confusion matrices for ML classifi- false positive rate (I - specificity)
cation of artificial (A) and natural (N) image Figure 5. ROC curves for DTSBN T, DTSBN,

classes; columns contain the ground truth. TSBNT and TSBN.




