Topic |
Subtopics & materials |
Course introduction & background
zip file (5.3 Mb)
8/26, 8/28 |
Syllabus
Introduction to pattern recognition
|
Richard O. Duda, Peter E. Hart and David G. Stork,
Pattern Classification, 2nd ed.,
Chapter 1, pp. 1-19,
John Wiley & Sons, New York, 2001.
|
|
Chapter 1 figures,
Fall 2003, EEL6825
(8 pages, 2 Mb).
|
Probability and statistics
|
Richard O. Duda, Peter E. Hart and David G. Stork,
Pattern Classification, 2nd ed.,
Appendix A.4, pp. 611-23,
John Wiley & Sons, New York, 2001.
|
|
Probability and statistics refresher,
Fall 2003, EEL6825
(10 pages, 176 kb).
|
Sample feature extraction: color
Selected classification problems
|
Bayesian decision theory
zip file (9.6 Mb)
9/2, 9/4 |
Bayesian decision theory
|
Richard O. Duda, Peter E. Hart and David G. Stork,
Pattern Classification, 2nd ed.,
Chapter 2, pp. 20-31,
John Wiley & Sons, New York, 2001.
|
|
Chapter 2 figures,
Fall 2003, EEL6825
(25 pages, 1.7 Mb).
|
Normal density and related discriminant functions
|
Richard O. Duda, Peter E. Hart and David G. Stork,
Pattern Classification, 2nd ed.,
Chapter 2, pp. 31-45,
John Wiley & Sons, New York, 2001.
|
|
Lecture slides,
Fall 2003, EEL6825
(41 slides, 11 pages, 6.3 Mb).
|
|
Discriminant examples for the Normal density,
Fall 2003, EEL6825
(2 pages, 72 kb).
|
|
Maximum-likelihood estimation
zip file (4.5 Mb)
9/9 - 9/16 |
Introduction to maximum-likelihood estimation
|
Richard O. Duda, Peter E. Hart and David G. Stork,
Pattern Classification, 2nd ed.,
Chapter 3, pp. 84-90,
John Wiley & Sons, New York, 2001.
|
|
Maximum-likelihood slides,
Fall 2003, EEL6825
(4 slides, 1 pages, 12 kb).
|
|
Introduction to maximum-likelihood estimation,
Fall 2003, EEL6825
(4 pages, 36 kb).
|
Maximum-likelihood estimation for Normal density
Application example: sky/ground segmentation
Application example: object segmentation
|
Expectation-Maximization (EM) & mixture modeling
zip file (454 kb)
9/23 - 10/7 |
Theoretical foundations of EM
|
Richard O. Duda, Peter E. Hart and David G. Stork,
Pattern Classification, 2nd ed.,
Chapter 3, pp. 124-128,
John Wiley & Sons, New York, 2001.
|
|
Maximum-likelihood estimation for mixture models: the EM algorithm,
Fall 2003, EEL6825
(21 pages, 388 kb).
|
|
Mixture modeling and the EM algorithm: slides,
Fall 2003, EEL6825
(38 slides, 10 pages, 120 kb).
|
|
EM/mixture modeling examples
zip file (28.8 Mb)
9/23 - 10/7 |
Motivating examples for mixture modeling
Synthetic mixture modeling examples
Animated EM examples
Application example: two-object classification
Two-parameter mixture-modeling example
Detailed mixture-modeling example
Importance of EM initialization: a case study
Number of component densities
|
EM/mixture modeling examples 2
zip file (10.4 Mb)
10/7 |
Application example: soda-can classification I
Application example: soda-can classification II
|
Odds & ends
zip file (4.8 Mb)
10/9 |
Generating non-uniform random numbers
|
W. H. Press, et. al., Numerical Recipes in C: The Art of Scientific
Computing, 2nd. ed.,
Section 7.2, pp. 287-290,
Cambridge University Press,
Cambridge, 1992 (4 pages, 56 kB).
(This book section contains a discussion on how to generate a random number from a Gaussian distribution.)
|
Application example: texture (non-color) based classification
Threshold-based classification of single models
|
Vector quantization & histogram modeling
zip file (3.3 Mb)
10/9-10/16 |
Vector quantization
Histogram modeling
Histogram modeling & classification examples
|
Markov systems
zip file (3.3 Mb)
10/16- |
Introduction to Markov systems
|
Richard O. Duda, Peter E. Hart and David G. Stork,
Pattern Classification, 2nd ed.,
Chapter 3, pp. 128-138,
John Wiley & Sons, New York, 2001.
|
|
Introduction to Markov systems,
Fall 2003, EEL6825 (41 pages, 528 kb).
|
|
Introduction to Markov systems: slides,
Fall 2003, EEL6825 (52 slides, 13 pages, 332 kb).
|
|
L. R. Rabiner,
"A tutorial on hidden Markov models and selected
applications in speech recognition,",
Proc. of the IEEE, vol. 77, no. 2, pp. 257-86, 1989
(30 pages, 2.2 MB).
|
HMM Mathematica examples
|
HMM applications
zip file (21.9 Mb)
|
Application example: speech recognition case study
|
Sound (wav) files used for speech recognition case study:
- Repeated instances of word "one" (1.8 Mb)
- Repeated instances of word "two" (1.8 Mb)
- Repeated instances of word "three" (1.8 Mb)
- Repeated instances of word "four" (1.8 Mb)
- Repeated instances of word "five" (1.7 Mb)
- Repeated instances of word "dog" (1.8 Mb)
- Repeated instances of word "god" (1.7 Mb)
|
Application example: gesture recognition
Application example: HMM-based stochastic similarity measure
|
HMM-based similarity between stochastic time series: slides, Fall 2003, EEL6825 (10 slides, 272 kb).
|
|
M. C. Nechyba and Y. Xu,
"Stochastic Similarity for Validating Human Control Strategy
Models,", IEEE Trans. on Robotics and Automation, vol. 14,
no. 3, pp. 437-51, 1998 (15 pages, 816 kb).
|
Application example: discontinuous driving control
|
Discontinuous driving control: slides, Fall 2003, EEL6825 (16 slides, 1.1 Mb).
|
|
M. C. Nechyba and Y. Xu,
"On Learning Discontinuous Human Control Strategies,",
Int. Journal Of Intelligent Systems, vol. 16, no. 4,
pp. 547-70, 2001 (24 pages, 500 kb).
|
|
M. C. Nechyba,
Learning and Validation of Human Control Strategies,
Ph.D. Thesis, CMU-RI-TR-98-06, Robotics Institute, Carnegie Mellon
University, 1998 (208 pages, 4.7 Mb).
|
|
Short human driving sequence in driving simulator used for the above two
applications.
|
Application example: predicting neural-spike activity
|
Predicting neural-spike activity: slides, Fall 2003, EEL6825 (12 slides, 1.7 Mb).
|
|
S. Darmanjian, S. P. Kim, M. C. Nechyba, S. Morrison, J. Principe,
J. Wessberg, M. A. L. Nicolelis,
"Bimodal Brain-Machine Interface for Motor Control of Robotic Prosthetic,"
to be presented at IEEE Int. Conf. on Intelligent Robots and Systems, Las Vegas, October, 2003 (7 pages, 616 kb).
|
|
Feature-dimensionality reduction
zip file (6.6 Mb)
|
Feature dimensionality reduction: PCA and the Fisher linear
discriminant
|
Richard O. Duda, Peter E. Hart and David G. Stork,
Pattern Classification, 2nd ed.,
Chapter 3, pp. 114-121,
John Wiley & Sons, New York, 2001.
|
Synthetic-data examples
Real-data examples
|
Neural networks
zip file (6.6 Mb)
|
Introduction to neural networks
Advanced parameter optimization
|
Introduction to advanced parameter optimization,
Fall 2003, EEL6825 (13 pages, 240 kB).
|
|
Introduction to advanced parameter optimization: slides, Fall 2003, EEL6825 (54 slides, 14 pages, 464 kB).
|
|
W. H. Press, et. al., Numerical Recipes in C: The Art of Scientific
Computing, 2nd. ed., Sections 10.1-10.2,
pp. 397-405,
Cambridge University Press,
Cambridge, 1992 (9 pages, 208 kB).
|
Conjugate gradient algorithm
Advanced neural network techniques
|
Advanced neural network techniques: slides (includes scaled conjugate gradient slides), Fall 2003, EEL6825 (72 slides, 18 pages, 652 kB).
|
|
M. C. Nechyba and Y. Xu,
"Cascade neural networks with node-decoupled extended Kalman filtering,"
Proc. IEEE Int. Symp. on Computational Intelligence in Robotics and
Automation, vol. 1, pp. 214-9, 1997 (6 pages, 80 kB).
|
Neural network applications
ALVINN
|
D. A.
Pomerleau,
"Efficient Training of Artificial Neural Networks for
Autonomous Navigation,"
Neural Computation, vol. 3, no. 1, pp. 88-97,
1991 (10 pages, 148 kB).
[provided courtesy of Dean Pomerleau; some figures are missing.]
|
|
Gaussian fitting of ALVINN ouput,
Fall 2003, EEL6825 (324 kb).
|
|
Gaussian fitting of ALVINN ouput,
Fall 2003, EEL6825 (web version of above Mathematica notebook).
|
RALPH
|
D. A.
Pomerleau and T. Jochem,
"Rapidly Adapting Machine Vision for Automated Vehicle
Steering," IEEE Expert, vol. 11, no. 2, pp. 19-27,
1996 (9 pages, 1.5 MB).
|
|
RALPH examples
, Fall 2003, EEL6825 (1.7 MB).
[The above notebook loads in a
straight road image (40 kB)
and a
curved road image (40 kB).]
|
|
RALPH examples
Fall 2003, EEL6825 (web version of above Mathematica notebook).
|
Face detection
References
|
T.
M. Mitchell, "Chapter 4: Artificial Neural Networks," Machine
Learning, McGraw-Hill, Boston, 1997.
|
|
C. M. Bishop, "Chapter 7: Parameter Optimization Algorithms,"
Neural Networks for Pattern Recognition,
Oxford University Press, Oxford, 1995.
|
|
Nonparametric methods
|
Nonparametric methods
|
Richard O. Duda, Peter E. Hart and David G. Stork,
Pattern Classification, 2nd ed.,
Chapter 4, pp. 161-214,
John Wiley & Sons, New York, 2001.
|
|